You land on a strange spherical planet X. As a curious physicist, you set out to make the following measurements: (1) you observe that planet X has no appreciable atmosphere, (2) you measure that if you throw a 0.25 kg stone vertically upwards with launch speed 10 m/s, it comes back to ground in 8 sec, and (3) you measure the equatorial circumference to be 250,000 km. What is the mass of planet X? [Hint: The value of g on the planet surface is related to its mass M and radius R by the formula g = GM/R2.] a) 9*1025 kg b) 2.3*1027 kg c) 6.9*1026 kg If you take your spaceship to a 10,000 km altitude circular orbit around planet X, what would be the orbital period of the spaceship? [Hint: Use the fact that the gravitational force causes the radial acceleration to calculate the orbital speed.] a) 4.89 hrs b) 9.78 hrs c) 19.56 hrs
You land on a strange spherical planet X. As a curious physicist, you set out to make the following measurements: (1) you observe that planet X has no appreciable atmosphere, (2) you measure that if you throw a 0.25 kg stone vertically upwards with launch speed 10 m/s, it comes back to ground in 8 sec, and (3) you measure the equatorial circumference to be 250,000 km. What is the mass of planet X? [Hint: The value of g on the planet surface is related to its mass M and radius R by the formula g = GM/R2.]
a) 9*1025 kg
b) 2.3*1027 kg
c) 6.9*1026 kg
If you take your spaceship to a 10,000 km altitude circular orbit around planet X, what would be the orbital period of the spaceship? [Hint: Use the fact that the gravitational force causes the radial acceleration to calculate the orbital speed.]
a) 4.89 hrs
b) 9.78 hrs
c) 19.56 hrs
Trending now
This is a popular solution!
Step by step
Solved in 5 steps