You found that the reduction formula of a certain integral is In = a" sin 2x + nx"-1 cos 2x – n (n – 1) In-2 and that I1 sin 2xWhat is I3 ? 1 3 sin (2æ) +a² cos (2æ) + sin (2æ) 4 1 3 3 sin (2a) – a² cos (2æ) + sin (2æ) CoS 4 1 3 3 sin (2a) +a² cos (2æ) – sin (2æ) - 4 3 3 sin (2e) –a cos (2xr) – sin (2)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
You found that the reduction formula of a certain integral is
1
In
x" sin 2x + nx"-1 cos 2x – n (n – 1) In-2 and that I =sin 2xWhat is I3 ?
4
2
O 1
3
x³ sin (2x) + x² cos (2x) + -sin (2x)
4
4
O1
3
-x³ sin (2x)
3
2? cos (2æ) +sin (2æ)
sin (2x)
4
O1
sin (2x) + x² cos (2x)
4
3
3
-sin (2x)
4
1
3
x² cos (2x)
4
3
" sin (2a) –° cos (2æ) – sin (2a)
sin (2x)
4
Transcribed Image Text:You found that the reduction formula of a certain integral is 1 In x" sin 2x + nx"-1 cos 2x – n (n – 1) In-2 and that I =sin 2xWhat is I3 ? 4 2 O 1 3 x³ sin (2x) + x² cos (2x) + -sin (2x) 4 4 O1 3 -x³ sin (2x) 3 2? cos (2æ) +sin (2æ) sin (2x) 4 O1 sin (2x) + x² cos (2x) 4 3 3 -sin (2x) 4 1 3 x² cos (2x) 4 3 " sin (2a) –° cos (2æ) – sin (2a) sin (2x) 4
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Indefinite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,