17. Use the theory of residue to evaluate the following definite integrals r2 (a) /" (b) / do 2+ cos 0 ' cos 30d0 5 – 4 cos 0' - cos 20d0 1 — 2а сos @ + a2 (-1 < a < 1), (c) where (4) / sin?" Odo where n = 1,2, ....

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Please solve 17(b) and 17(c) 

**Exercise 17**

Use the theory of residue to evaluate the following definite integrals:

(a) \( \int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}, \)

(b) \( \int_{0}^{2\pi} \frac{\cos 3\theta \,d\theta}{5 - 4 \cos \theta}, \)

(c) \( \int_{0}^{\pi} \frac{\cos 2\theta \,d\theta}{1 - 2a \cos \theta + a^2} \) where \((-1 < a < 1),\)

(d) \( \int_{0}^{\pi} \sin^{2n} \theta \, d\theta \) where \(n = 1, 2, \ldots\).

**Answers:**

(a) \( \frac{2\pi}{\sqrt{3}}, \)

(b) \( \frac{\pi}{12}, \)

(c) \( \frac{\pi a^2}{1 - a^2}, \)

(d) \( \frac{\pi \, (2n)!}{2^{2n}(n!)^2}. \)
Transcribed Image Text:**Exercise 17** Use the theory of residue to evaluate the following definite integrals: (a) \( \int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}, \) (b) \( \int_{0}^{2\pi} \frac{\cos 3\theta \,d\theta}{5 - 4 \cos \theta}, \) (c) \( \int_{0}^{\pi} \frac{\cos 2\theta \,d\theta}{1 - 2a \cos \theta + a^2} \) where \((-1 < a < 1),\) (d) \( \int_{0}^{\pi} \sin^{2n} \theta \, d\theta \) where \(n = 1, 2, \ldots\). **Answers:** (a) \( \frac{2\pi}{\sqrt{3}}, \) (b) \( \frac{\pi}{12}, \) (c) \( \frac{\pi a^2}{1 - a^2}, \) (d) \( \frac{\pi \, (2n)!}{2^{2n}(n!)^2}. \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Algebraic Operations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,