You are on a rollercoaster, and the path of your body is modeled by a vector function r(t), where t is in seconds, the units of distance are in feet, and t = 0 represents the start of the ride. Assume the axes represent the standard cardinal directions and elevation (x is E/W, y is N/S, z is height). Explain what the following would represent physically, being as specific as possible. These are all common roller coaster shapes/behaviors and can be explained in specific language with regard to units: a. r(0)=r(120) b. For 0 ≤ t ≤ 30, N(t) = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
You are on a rollercoaster, and the path of your body is modeled by a vector function r(t),
where t is in seconds, the units of distance are in feet, and t = 0 represents the start of the
ride. Assume the axes represent the standard cardinal directions and elevation (x is E/W, y
is N/S, z is height). Explain what the following would represent physically, being as specific
as possible. These are all common roller coaster shapes/behaviors and can be explained in
specific language with regard to units:
a. r(0)=r(120)
b. For 0 ≤ t ≤ 30, N(t) = 0
c. r'(30) = 120
d. For 60 ≤ t ≤ 64, k(t) =
40
and z is constant.
e.
For 100 ≤ t ≤ 102, your B begins by pointing toward positive z, and does one full
rotation in the normal (NB) plane while your T remains constant.
Transcribed Image Text:You are on a rollercoaster, and the path of your body is modeled by a vector function r(t), where t is in seconds, the units of distance are in feet, and t = 0 represents the start of the ride. Assume the axes represent the standard cardinal directions and elevation (x is E/W, y is N/S, z is height). Explain what the following would represent physically, being as specific as possible. These are all common roller coaster shapes/behaviors and can be explained in specific language with regard to units: a. r(0)=r(120) b. For 0 ≤ t ≤ 30, N(t) = 0 c. r'(30) = 120 d. For 60 ≤ t ≤ 64, k(t) = 40 and z is constant. e. For 100 ≤ t ≤ 102, your B begins by pointing toward positive z, and does one full rotation in the normal (NB) plane while your T remains constant.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,