ycle uses water as the working fluid. The boiler operates at 6400 kPa and the condenser at 70 kPa. At the entrance to the turbine, the temperature is 490 °C. The isentropic efficiency c np losses are negligible, and the water leaving the condenser is subcooled by 6.7 °C. The boiler is sized for a mass flow rate of 18 kg/s. wing values. e at the pump inlet. 80.3 0 °C 0 m³kg O kJ/kg 0 kW 0 kW O kW ume at the pump inlet. 0.001030 halpy at the turbine exit. X 346 h heat is added in the boiler. ired to operate the pumps. roduced by the cycle. ciency.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A simple Rankine cycle uses water as the working fluid. The boiler operates at 6400 kPa and the condenser at 70 kPa. At the entrance to the turbine, the temperature is 490 °C. The isentropic efficiency of the turbine is 84
%, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 6.7 °C. The boiler is sized for a mass flow rate of 18 kg/s.
Determine the following values.
(1) The temperature at the pump inlet. / 80.3
(2) The specific volume at the pump inlet.
(3) The specific enthalpy at the turbine exit. X 346
(4) The rate at which heat is added in the boiler.
(5) The power required to operate the pumps.
(6) The net power produced by the cycle.
(7) The thermal efficiency.
o °C
O m/kg
O kJ/kg
O kW
O kW
O kW
0.001030
Transcribed Image Text:A simple Rankine cycle uses water as the working fluid. The boiler operates at 6400 kPa and the condenser at 70 kPa. At the entrance to the turbine, the temperature is 490 °C. The isentropic efficiency of the turbine is 84 %, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 6.7 °C. The boiler is sized for a mass flow rate of 18 kg/s. Determine the following values. (1) The temperature at the pump inlet. / 80.3 (2) The specific volume at the pump inlet. (3) The specific enthalpy at the turbine exit. X 346 (4) The rate at which heat is added in the boiler. (5) The power required to operate the pumps. (6) The net power produced by the cycle. (7) The thermal efficiency. o °C O m/kg O kJ/kg O kW O kW O kW 0.001030
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY