Y9   RMC, Inc., is a small firm that produces a variety of chemical products. In a particular production process, three raw materials are blended (mixed together) to produce two products: a fuel additive and a solvent base. Each ton of fuel additive is a mixture of 2⁄5 ton of material 1 and 3⁄5 of material 3. A ton of solvent base is a mixture of 1⁄2 ton of material 1, 1/5 ton of material 2, and 3⁄10 ton of material 3. After deducting relevant costs, the profit contribution is $40 for every ton of fuel additive produced and $30 for every ton of solvent base produced. RMC's production is constrained by a limited availability of the three raw materials. For the current production period, RMC has available the following quantities of each raw material: Raw Material Amount Available for Production Material 1 33 tons Material 2 9 tons Material 3 36 tons Assuming that RMC is interested in maximizing the total profit contribution, answer the following. (Assume F is the number of tons of fuel additive and S is the number of tons of solvent base.) (a) What is the linear programming model for this problem that maximizes profit (in dollars)?} Max Material1 Material2 Material3 (b) Find the optimal solution using the graphical solution procedure. How many tons of each product should be produced? (F, S) What is the projected total profit contribution (in dollars)? $ (c) Is there any unused material? If so, how much (in tons)? (If there is no unused material, enter 0.) Material 1 tonsMaterial 2 tonsMaterial 3 tons (d) Are any of the constraints redundant? If so, which ones? (Select all that apply.) Material 1 constraintMaterial 2 constraintMaterial 3 constraint No redundant constraints

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Y9

 

RMC, Inc., is a small firm that produces a variety of chemical products. In a particular production process, three raw materials are blended (mixed together) to produce two products: a fuel additive and a solvent base. Each ton of fuel additive is a mixture of 2⁄5 ton of material 1 and 3⁄5 of material 3. A ton of solvent base is a mixture of 1⁄2 ton of material 1, 1/5 ton of material 2, and 3⁄10 ton of material 3. After deducting relevant costs, the profit contribution is $40 for every ton of fuel additive produced and $30 for every ton of solvent base produced.

RMC's production is constrained by a limited availability of the three raw materials. For the current production period, RMC has available the following quantities of each raw material:

Raw Material Amount Available for Production
Material 1 33 tons
Material 2 9 tons
Material 3 36 tons

Assuming that RMC is interested in maximizing the total profit contribution, answer the following. (Assume F is the number of tons of fuel additive and S is the number of tons of solvent base.)

(a)

What is the linear programming model for this problem that maximizes profit (in dollars)?}
Max
Material1
Material2
Material3
(b)

Find the optimal solution using the graphical solution procedure. How many tons of each product should be produced?

(FS)
What is the projected total profit contribution (in dollars)?

$
(c)

Is there any unused material? If so, how much (in tons)? (If there is no unused material, enter 0.)

Material 1 tonsMaterial 2 tonsMaterial 3 tons
(d)

Are any of the constraints redundant? If so, which ones? (Select all that apply.)

Material 1 constraintMaterial 2 constraintMaterial 3 constraint No redundant constraints

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 44 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,