Write the (third-order) differential equation y"" = 2y" +9y' + 6y as a system of (first-order) differential equations. Namely, determine a matrix A such that y' = Ay where y = 園 Submit

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Write the (third-order) differential equation \( y''' = 2y'' + 9y' + 6y \) as a system of (first-order) differential equations.

Namely, determine a matrix \( A \) such that \( \vec{y}' = A\vec{y} \) where \( \vec{y} = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix} \).

**Matrix Representation:**

The problem requires transforming a third-order differential equation into a system of first-order differential equations. Specifically, we need to express the third derivative \( y''' \) using a matrix equation.

**Solution Steps:**

1. **Define \( \vec{y} \):**
   - \(\vec{y} = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}\)

2. **Express \( \vec{y}' \):**
   - \(\vec{y}' = \begin{bmatrix} y' \\ y'' \\ y''' \end{bmatrix}\)

3. **Set Up the Matrix \( A \):**
   - Use the original third-order equation \( y''' = 2y'' + 9y' + 6y \) to express \( y''', y'', \text{and } y' \) in terms of matrix multiplication.
   - \(\vec{y}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 9 & 2 \end{bmatrix} \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}\)

The empty grid under the statement represents where the matrix \( A \) is to be entered. The "Submit" button implies this is an interactive component on the website where users input their solution.
Transcribed Image Text:**Problem Statement:** Write the (third-order) differential equation \( y''' = 2y'' + 9y' + 6y \) as a system of (first-order) differential equations. Namely, determine a matrix \( A \) such that \( \vec{y}' = A\vec{y} \) where \( \vec{y} = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix} \). **Matrix Representation:** The problem requires transforming a third-order differential equation into a system of first-order differential equations. Specifically, we need to express the third derivative \( y''' \) using a matrix equation. **Solution Steps:** 1. **Define \( \vec{y} \):** - \(\vec{y} = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}\) 2. **Express \( \vec{y}' \):** - \(\vec{y}' = \begin{bmatrix} y' \\ y'' \\ y''' \end{bmatrix}\) 3. **Set Up the Matrix \( A \):** - Use the original third-order equation \( y''' = 2y'' + 9y' + 6y \) to express \( y''', y'', \text{and } y' \) in terms of matrix multiplication. - \(\vec{y}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 9 & 2 \end{bmatrix} \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}\) The empty grid under the statement represents where the matrix \( A \) is to be entered. The "Submit" button implies this is an interactive component on the website where users input their solution.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,