Write the given system in the form x' = P(t)x+ f(t). x' = 3x-7y+z+t y' = x-5z+t²2² z' = 3y - 5z+t³ ---

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Converting a System of Differential Equations into Matrix Form**

Consider the system of differential equations given below:

\[
\begin{aligned}
x' &= 3x - 7y + z + t \\
y' &= x - 5z + t^2 \\
z' &= 3y - 5z + t^3
\end{aligned}
\]

We aim to write this system in the form:

\[
\mathbf{x}' = P(t)\mathbf{x} + f(t)
\]

Here’s the original differential system:
- \( x' = 3x - 7y + z + t \)
- \( y' = x - 5z + t^2 \)
- \( z' = 3y - 5z + t^3 \)

We can express the system in matrix notation by defining the vector \(\mathbf{x}\) and the matrix \(P(t)\) and vector \(f(t)\).

\[
\mathbf{x} = \begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
\]

Next, we identify the matrix \(P(t)\) from the coefficients of \(x\), \(y\), and \(z\):

\[
P(t) = \begin{pmatrix}
3 & -7 & 1 \\
1 & 0 & -5 \\
0 & 3 & -5
\end{pmatrix}
\]

We also identify the vector \(f(t)\) that consists of the non-homogeneous terms involving \(t\):

\[
f(t) = \begin{pmatrix}
t \\
t^2 \\
t^3
\end{pmatrix}
\]

So, the original system can be rewritten in matrix form as:

\[
\begin{pmatrix}
x' \\
y' \\
z'
\end{pmatrix}
=
\begin{pmatrix}
3 & -7 & 1 \\
1 & 0 & -5 \\
0 & 3 & -5
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
+
\begin{pmatrix}
t \\
t^2 \\
t^3
\end{pmatrix}
\]

Thus, the required matrix form is:

\[
\mathbf{x}' = P
Transcribed Image Text:**Converting a System of Differential Equations into Matrix Form** Consider the system of differential equations given below: \[ \begin{aligned} x' &= 3x - 7y + z + t \\ y' &= x - 5z + t^2 \\ z' &= 3y - 5z + t^3 \end{aligned} \] We aim to write this system in the form: \[ \mathbf{x}' = P(t)\mathbf{x} + f(t) \] Here’s the original differential system: - \( x' = 3x - 7y + z + t \) - \( y' = x - 5z + t^2 \) - \( z' = 3y - 5z + t^3 \) We can express the system in matrix notation by defining the vector \(\mathbf{x}\) and the matrix \(P(t)\) and vector \(f(t)\). \[ \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \] Next, we identify the matrix \(P(t)\) from the coefficients of \(x\), \(y\), and \(z\): \[ P(t) = \begin{pmatrix} 3 & -7 & 1 \\ 1 & 0 & -5 \\ 0 & 3 & -5 \end{pmatrix} \] We also identify the vector \(f(t)\) that consists of the non-homogeneous terms involving \(t\): \[ f(t) = \begin{pmatrix} t \\ t^2 \\ t^3 \end{pmatrix} \] So, the original system can be rewritten in matrix form as: \[ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 3 & -7 & 1 \\ 1 & 0 & -5 \\ 0 & 3 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t \\ t^2 \\ t^3 \end{pmatrix} \] Thus, the required matrix form is: \[ \mathbf{x}' = P
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,