What price would you have to get for the electricity you produce to obtain a 10% return on the plant investment assuming a project lifetime of 20 years? Use the tables for the cumulative wind power distribution in the notes on wind probability to answer this question. Assume an air density of 1.225 kg/m3.
What price would you have to get for the electricity you produce to obtain a 10% return on the plant investment assuming a project lifetime of 20 years? Use the tables for the cumulative wind power distribution in the notes on wind probability to answer this question. Assume an air density of 1.225 kg/m3.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
h2-
Your company is considering the installation of a 2 MW wind turbine with a rotor diameter of 80 m in a location with average wind v = 10 m/s. The turbine has a cut-in velocity of 5 m/s and a cut-out velocity of 25 m/s. The capacity factor is 0.45. The installed cost of the turbine is $3,500,000. Operating expenses are $225,000 per year. The system has a power coefficient (electric power generated divided by wind power) of 0.45.
- What price would you have to get for the electricity you produce to obtain a 10% return on the plant investment assuming a project lifetime of 20 years? Use the tables for the cumulative wind power distribution in the notes on wind probability to answer this question. Assume an air density of 1.225 kg/m3.
- How would your answer to problem one change for each of the following modifications to the data in that problem? (Consider each change independently, not as a cumulative series of changes.)
- The average velocity is lowered to 8.5 m/s.
- The rotor diameter is increased to 90 m.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,