Convert Berkeley Madonna code to Matlab (submit your m.file). Runtime is from 0 to 10, with dt of 0.02. Code a stimulus for 0.5 seconds at timepoint 3, with an intensity of 100 and graph the time course. Plot Q, Imemb and the stimulus.  Here is the Berkeley Madonna code: {Top model}    {Reservoirs}    d/dt (Q) = + Stimulus - Imemb       INIT Q = -65/cap      {Flows}    Stimulus = Intensity*SquarePulse(3,.5) {at t=3 of 0.5 duration}    Imemb = IL+IK+INa      {Functions}    Intensity = 100 {microamps}    cap = 1    E = Q/cap      {Submodel "INa_"}         {Functions}       ENa = 50       INa = gNa*(E-ENa)       GNaMax = 120       gNa = GNaMax*m*m*m*h         {Submodel "m_gates"}            {Reservoirs}          d/dt (m) = + m_prod - m_decay             INIT m = am/(am+bm)            {Flows}          m_prod = am*(1-m)          m_decay = bm*m            {Functions}          am = 0.1*(E+40)/(1-exp(-(E+40)/10))          bm = 4*exp(-(E+65)/18)         {Submodel "h_gates"}            {Reservoirs}          d/dt (h) = + h_prod - h_decay             INIT h = ah/(ah+bh)            {Flows}          h_prod = ah*(1-h)          h_decay = bh*h            {Functions}          ah = 0.07*exp(-(E+65)/20)          bh = 1/(exp(-(E+35)/10)+1)      {Submodel "IK_"}         {Functions}       EK = -77       IK = gK*(E-EK)       gK_max = 36       gK = gK_max*n*n*n*n         {Submodel "n_gates"}            {Reservoirs}          d/dt (n) = + n_prod - n_decay             INIT n = an/(an+bn)              {Flows}          n_prod = an*(1-n)          n_decay = bn*n            {Functions}          an = 0.01*(E+55)/(1-exp(-(E+55)/10))          bn = 0.125*exp(-(E+65)/80)      {Submodel "IL_"}         {Functions}       IL = gL*(E-EL)       EL = -54.4       gL = .3   {Globals} {End Globals}         One way to code a square pulse in Matlab: ___________________________________________________   % % Generate Pulse between 3 and 3.5 seconds if t>3 && t<=3.5 squarepulse = 1; else squarepulse = 0; end

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%

Convert Berkeley Madonna code to Matlab (submit your m.file). Runtime is from 0 to 10, with dt of 0.02. Code a stimulus for 0.5 seconds at timepoint 3, with an intensity of 100 and graph the time course. Plot Q, Imemb and the stimulus. 

Here is the Berkeley Madonna code:

{Top model}

   {Reservoirs}

   d/dt (Q) = + Stimulus - Imemb

      INIT Q = -65/cap

 

   {Flows}

   Stimulus = Intensity*SquarePulse(3,.5) {at t=3 of 0.5 duration}

   Imemb = IL+IK+INa

 

   {Functions}

   Intensity = 100 {microamps}

   cap = 1

   E = Q/cap

 

   {Submodel "INa_"}

 

      {Functions}

      ENa = 50

      INa = gNa*(E-ENa)

      GNaMax = 120

      gNa = GNaMax*m*m*m*h

 

      {Submodel "m_gates"}

 

         {Reservoirs}

         d/dt (m) = + m_prod - m_decay

            INIT m = am/(am+bm)

 

         {Flows}

         m_prod = am*(1-m)

         m_decay = bm*m

 

         {Functions}

         am = 0.1*(E+40)/(1-exp(-(E+40)/10))

         bm = 4*exp(-(E+65)/18)

 

      {Submodel "h_gates"}

 

         {Reservoirs}

         d/dt (h) = + h_prod - h_decay

            INIT h = ah/(ah+bh)

 

         {Flows}

         h_prod = ah*(1-h)

         h_decay = bh*h

 

         {Functions}

         ah = 0.07*exp(-(E+65)/20)

         bh = 1/(exp(-(E+35)/10)+1)

 

   {Submodel "IK_"}

 

      {Functions}

      EK = -77

      IK = gK*(E-EK)

      gK_max = 36

      gK = gK_max*n*n*n*n

 

      {Submodel "n_gates"}

 

         {Reservoirs}

         d/dt (n) = + n_prod - n_decay

            INIT n = an/(an+bn)

 

 

         {Flows}

         n_prod = an*(1-n)

         n_decay = bn*n

 

         {Functions}

         an = 0.01*(E+55)/(1-exp(-(E+55)/10))

         bn = 0.125*exp(-(E+65)/80)

 

   {Submodel "IL_"}

 

      {Functions}

      IL = gL*(E-EL)

      EL = -54.4

      gL = .3

 

{Globals}

{End Globals}

 

 

 

 

One way to code a square pulse in Matlab:

___________________________________________________

 

% % Generate Pulse between 3 and 3.5 seconds

if t>3 && t<=3.5 squarepulse = 1;

else squarepulse = 0;

end

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

What happens if you change the capacitance Cm (cap)? How does the speed of the response change? Show in a graph and describe in 2 sentences. 

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Concept of Light
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education