Convert Berkeley Madonna code to Matlab (submit your m.file). Runtime is from 0 to 10, with dt of 0.02. Code a stimulus for 0.5 seconds at timepoint 3, with an intensity of 100 and graph the time course. Plot Q, Imemb and the stimulus. Here is the Berkeley Madonna code: {Top model} {Reservoirs} d/dt (Q) = + Stimulus - Imemb INIT Q = -65/cap {Flows} Stimulus = Intensity*SquarePulse(3,.5) {at t=3 of 0.5 duration} Imemb = IL+IK+INa {Functions} Intensity = 100 {microamps} cap = 1 E = Q/cap {Submodel "INa_"} {Functions} ENa = 50 INa = gNa*(E-ENa) GNaMax = 120 gNa = GNaMax*m*m*m*h {Submodel "m_gates"} {Reservoirs} d/dt (m) = + m_prod - m_decay INIT m = am/(am+bm) {Flows} m_prod = am*(1-m) m_decay = bm*m {Functions} am = 0.1*(E+40)/(1-exp(-(E+40)/10)) bm = 4*exp(-(E+65)/18) {Submodel "h_gates"} {Reservoirs} d/dt (h) = + h_prod - h_decay INIT h = ah/(ah+bh) {Flows} h_prod = ah*(1-h) h_decay = bh*h {Functions} ah = 0.07*exp(-(E+65)/20) bh = 1/(exp(-(E+35)/10)+1) {Submodel "IK_"} {Functions} EK = -77 IK = gK*(E-EK) gK_max = 36 gK = gK_max*n*n*n*n {Submodel "n_gates"} {Reservoirs} d/dt (n) = + n_prod - n_decay INIT n = an/(an+bn) {Flows} n_prod = an*(1-n) n_decay = bn*n {Functions} an = 0.01*(E+55)/(1-exp(-(E+55)/10)) bn = 0.125*exp(-(E+65)/80) {Submodel "IL_"} {Functions} IL = gL*(E-EL) EL = -54.4 gL = .3 {Globals} {End Globals} One way to code a square pulse in Matlab: ___________________________________________________ % % Generate Pulse between 3 and 3.5 seconds if t>3 && t<=3.5 squarepulse = 1; else squarepulse = 0; end
Convert Berkeley Madonna code to Matlab (submit your m.file). Runtime is from 0 to 10, with dt of 0.02. Code a stimulus for 0.5 seconds at timepoint 3, with an intensity of 100 and graph the time course. Plot Q, Imemb and the stimulus.
Here is the Berkeley Madonna code:
{Top model}
{Reservoirs}
d/dt (Q) = + Stimulus - Imemb
INIT Q = -65/cap
{Flows}
Stimulus = Intensity*SquarePulse(3,.5) {at t=3 of 0.5 duration}
Imemb = IL+IK+INa
{Functions}
Intensity = 100 {microamps}
cap = 1
E = Q/cap
{Submodel "INa_"}
{Functions}
ENa = 50
INa = gNa*(E-ENa)
GNaMax = 120
gNa = GNaMax*m*m*m*h
{Submodel "m_gates"}
{Reservoirs}
d/dt (m) = + m_prod - m_decay
INIT m = am/(am+bm)
{Flows}
m_prod = am*(1-m)
m_decay = bm*m
{Functions}
am = 0.1*(E+40)/(1-exp(-(E+40)/10))
bm = 4*exp(-(E+65)/18)
{Submodel "h_gates"}
{Reservoirs}
d/dt (h) = + h_prod - h_decay
INIT h = ah/(ah+bh)
{Flows}
h_prod = ah*(1-h)
h_decay = bh*h
{Functions}
ah = 0.07*exp(-(E+65)/20)
bh = 1/(exp(-(E+35)/10)+1)
{Submodel "IK_"}
{Functions}
EK = -77
IK = gK*(E-EK)
gK_max = 36
gK = gK_max*n*n*n*n
{Submodel "n_gates"}
{Reservoirs}
d/dt (n) = + n_prod - n_decay
INIT n = an/(an+bn)
{Flows}
n_prod = an*(1-n)
n_decay = bn*n
{Functions}
an = 0.01*(E+55)/(1-exp(-(E+55)/10))
bn = 0.125*exp(-(E+65)/80)
{Submodel "IL_"}
{Functions}
IL = gL*(E-EL)
EL = -54.4
gL = .3
{Globals}
{End Globals}
One way to code a square pulse in Matlab:
___________________________________________________
% % Generate Pulse between 3 and 3.5 seconds
if t>3 && t<=3.5 squarepulse = 1;
else squarepulse = 0;
end
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images
What happens if you change the capacitance Cm (cap)? How does the speed of the response change? Show in a graph and describe in 2 sentences.