Checkpoint B For Checkpoint B you will extend Checkpoint A to do the following: 1. Prompts the user for an additional parameter: the bound on the timescale $n$ of the simulation • If a user inputs a negative timescale, the program should immediately print an error message and exit. 2. The program will calculate , u for every time < and output these populations at each step • If the population grows negative, treat it as population that has become zero. Hint: your program will need a for-loop. Complete this checkpoint after we have introduced for-loops in class. Sample Output Sample input/output behavior for the checkpoint are provided below. Your program's spacing, spelling, capitalization, and punctuation wi need to match the sample output EXACTLY for this project. Ex 1 Sample Input/Output Given inputs a, 6, 7, 8, ko, uo, nas: 1.5 .001 .05 2.5 100 2 10 The program outputs ==>Bull Kelp and Purple Urchin Population Simulator <== - Model Parameters Kelp growth rate: Kelp death rate: Urchin birth rate: Urchin death rate: Initial Population Kelp population (in thousands) at t = 0: Urchin population (in thousands) at t = 0: --- Simulation --- Timescale: Time t = 0: 100.000k kelp, 2.000k urchins Time t = 1: 249.800k kelp, 7.000k urchins Time t = 2: 622.751k kelp, 76.930k urchins Time t = 3: 1508.970k kelp, 2280.018k urchins Time t = 4: 331.946k kelp, 168603.957k urchins Time t = 5: 0.000k kelp, 2545463.659k urchins Time t = 6: 0.000k kelp, 0.000k urchins Time t = 7: 0.000k kelp, 0.000k urchins Time t = 8: 0.000k kelp, 0.000k urchins Time t = 9: 0.000k kelp, 0.000k urchins Time t = 10: 0.000k kelp, 0.000k urchins
Checkpoint B For Checkpoint B you will extend Checkpoint A to do the following: 1. Prompts the user for an additional parameter: the bound on the timescale $n$ of the simulation • If a user inputs a negative timescale, the program should immediately print an error message and exit. 2. The program will calculate , u for every time < and output these populations at each step • If the population grows negative, treat it as population that has become zero. Hint: your program will need a for-loop. Complete this checkpoint after we have introduced for-loops in class. Sample Output Sample input/output behavior for the checkpoint are provided below. Your program's spacing, spelling, capitalization, and punctuation wi need to match the sample output EXACTLY for this project. Ex 1 Sample Input/Output Given inputs a, 6, 7, 8, ko, uo, nas: 1.5 .001 .05 2.5 100 2 10 The program outputs ==>Bull Kelp and Purple Urchin Population Simulator <== - Model Parameters Kelp growth rate: Kelp death rate: Urchin birth rate: Urchin death rate: Initial Population Kelp population (in thousands) at t = 0: Urchin population (in thousands) at t = 0: --- Simulation --- Timescale: Time t = 0: 100.000k kelp, 2.000k urchins Time t = 1: 249.800k kelp, 7.000k urchins Time t = 2: 622.751k kelp, 76.930k urchins Time t = 3: 1508.970k kelp, 2280.018k urchins Time t = 4: 331.946k kelp, 168603.957k urchins Time t = 5: 0.000k kelp, 2545463.659k urchins Time t = 6: 0.000k kelp, 0.000k urchins Time t = 7: 0.000k kelp, 0.000k urchins Time t = 8: 0.000k kelp, 0.000k urchins Time t = 9: 0.000k kelp, 0.000k urchins Time t = 10: 0.000k kelp, 0.000k urchins
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Add the missing pieces from checkpoint B while using this code
Expert Solution
Step 1
The code for the above problem is given below:
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education