Consider the automobile hydraulic system shown in Figure 14.18. Suppose a force of 100 N is applied to the brake pedal, which acts on the pedal cylinder (acting as a "master" cylinder) through a lever. A force of 500 N is exerted on the pedal cylinder. Pressure created in the pedal cylinder is transmitted to the four wheel cylinders. The pedal cylinder has a diameter of 0.500 cm and each wheel cylinder has a diameter of 2.50 cm. Calculate the magnitude of the force F, created at each of the wheel cylinders. A1 0.5 cm F, 0.040 m 0.20 m Pedal F= 100 N cylinder F2 2.5 cm Wheel cylinder Figure 14.18 Hydraulic brakes use Pascal's principle. The driver pushes the brake pedal, exerting a force that is increased by the simple lever and again by the hydraulic system. Each of the identical wheel cylinders receives the same pressure and, therefore, creates the same force output F2. The circular cross-sectional areas of the pedal and wheel cylinders are represented by A1 and A2, respectively.
Fluid Pressure
The term fluid pressure is coined as, the measurement of the force per unit area of a given surface of a closed container. It is a branch of physics that helps to study the properties of fluid under various conditions of force.
Gauge Pressure
Pressure is the physical force acting per unit area on a body; the applied force is perpendicular to the surface of the object per unit area. The air around us at sea level exerts a pressure (atmospheric pressure) of about 14.7 psi but this doesn’t seem to bother anyone as the bodily fluids are constantly pushing outwards with the same force but if one swims down into the ocean a few feet below the surface one can notice the difference, there is increased pressure on the eardrum, this is due to an increase in hydrostatic pressure.
How much pressure is transmitted in the hydraulic system considered in Example 14.3? Express your answer in atmospheres.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images