We wish to use the analytical model developed by Joshi and Webb to predict the heat transfer and friction characteristics (j and f) of the Offset Strip-Fin (OSF) array. 1. Compare the predictions of the friction factor using equation 5.6 of the book to the measurements of Webb and Joshi (taken from "Prediction of the Friction Factor for the Offset Strip-Fin Matrix" and given in the last column of the table below) for surfaces 1 and 8 (see Table below) at Reph = 529 and 623, respectively. As shown in the table below, the experimental friction factors for surfaces, 1 and 8 are 0.0551 and 0.0434 respectively. Use CD = 0.8. Surface 1 8 α 0.123 0.224 t/l 0.016 0.064 h (mm) t (mm) D₁ (mm) 38.1 0.406 7.518 1.626 10.897 38.1 f 0.0551 0.0434 2. Use the Webb and Joshi model given in the notes to make a plot of Nu versus the fin length (1) for 1 mm <5 mm. You should use 0.5 mm increments of 1 or smaller. Use a= 0.184, t = 0.102 mm, h = 4.98 mm, and Reph = 500. Explain why the Nu behaves as it does with respect to 1. Assume that the fin efficiency is equal to 1.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter3: Transient Heat Conduction
Section: Chapter Questions
Problem 3.9P: 3.9 The heat transfer coefficients for the flow of 26.6°C air over a sphere of 1.25 cm in diameter...
icon
Related questions
Question
(5.6)
f=
1-Y
(1+y)(1+a+8)
(f₁ + a£ + Cot
2Lp
Transcribed Image Text:(5.6) f= 1-Y (1+y)(1+a+8) (f₁ + a£ + Cot 2Lp
We wish to use the analytical model developed by Joshi and Webb to predict the heat
transfer and friction characteristics (j and f) of the Offset Strip-Fin (OSF) array.
1.
Compare the predictions of the friction factor using equation 5.6 of the book
to the measurements of Webb and Joshi (taken from "Prediction of the
Friction Factor for the Offset Strip-Fin Matrix" and given in the last column
of the table below) for surfaces 1 and 8 (see Table below) at Reph = 529 and
623, respectively. As shown in the table below, the experimental friction
factors for surfaces, 1 and 8 are 0.0551 and 0.0434 respectively. Use CD =
0.8.
Surface
1
8
α
0.123
0.224
t/l
0.016
0.064
h (mm)
38.1
38.1
t (mm) Dh (mm)
7.518
0.406
1.626 10.897
0.0551
0.0434
2. Use the Webb and Joshi model given in the notes to make a plot of Nu versus
the fin length (1) for 1 mm < 1<5 mm. You should use 0.5 mm increments
of 1 or smaller. Use α= 0.184, t = 0.102 mm, h = 4.98 mm, and Reph = 500.
Explain why the Nu behaves as it does with respect to 1. Assume that the fin
efficiency is equal to 1.
3. Convert the Nu data that you generated in Problem 2 above into j-factors by
assuming that Pr = 0.7. Next calculate the friction factor for the same
values of 1, the same Reph, and for the same geometric parameters as Problem
2. Plot flj versus the fin length (1) for 1 mm </<5 mm. Does your plot
verify the Reynolds analogy for this case? Explain why this should be
expected.
Transcribed Image Text:We wish to use the analytical model developed by Joshi and Webb to predict the heat transfer and friction characteristics (j and f) of the Offset Strip-Fin (OSF) array. 1. Compare the predictions of the friction factor using equation 5.6 of the book to the measurements of Webb and Joshi (taken from "Prediction of the Friction Factor for the Offset Strip-Fin Matrix" and given in the last column of the table below) for surfaces 1 and 8 (see Table below) at Reph = 529 and 623, respectively. As shown in the table below, the experimental friction factors for surfaces, 1 and 8 are 0.0551 and 0.0434 respectively. Use CD = 0.8. Surface 1 8 α 0.123 0.224 t/l 0.016 0.064 h (mm) 38.1 38.1 t (mm) Dh (mm) 7.518 0.406 1.626 10.897 0.0551 0.0434 2. Use the Webb and Joshi model given in the notes to make a plot of Nu versus the fin length (1) for 1 mm < 1<5 mm. You should use 0.5 mm increments of 1 or smaller. Use α= 0.184, t = 0.102 mm, h = 4.98 mm, and Reph = 500. Explain why the Nu behaves as it does with respect to 1. Assume that the fin efficiency is equal to 1. 3. Convert the Nu data that you generated in Problem 2 above into j-factors by assuming that Pr = 0.7. Next calculate the friction factor for the same values of 1, the same Reph, and for the same geometric parameters as Problem 2. Plot flj versus the fin length (1) for 1 mm </<5 mm. Does your plot verify the Reynolds analogy for this case? Explain why this should be expected.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning