We wish to test of hypothesis H0 : μ1 = μ2 vs H1 : μ1 ̸= μ2. (does not equal) Use the significance level α = 0.01. a. Find the value of the test statistic and distribution of the test statistic. b. Find the p-value of the test or rejection region. c. Find the 99% confidence interval of the difference μ2 − μ1. d. Make a conclusion (abcd please)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

We wish to test of hypothesis
H0 : μ1 = μ2 vs H1 : μ1 ̸= μ2. (does not equal)
Use the significance level α = 0.01.
a. Find the value of the test statistic and distribution of the test statistic.
b. Find the p-value of the test or rejection region.
c. Find the 99% confidence interval of the difference μ2 − μ1.
d. Make a conclusion

(abcd please)

500 1000 1500 2000
balance
0
East
O
South
region
West
We wish to compare Balance in 3 different Region.
• Region: A factor with levels East, South, and West indicating the individual's geographical location.
Balance: Average credit card balance in $.
The mean balance for East, South and West are denoted, respectively, by 1, 2 and 3.
Data set
library (ISLR2)
head (Credit)
2 34
11 No
3 82
15 Yes
## Income Limit Rating Cards Age Education Own Student Married Region Balance
## 1 14.891 3606
## 2 106.025 6645
## 3 104.593 7075
## 4 148.924 9504
## 5 55.882 4897
## 6 80.180 8047
4 71
3 36
2 68
4 77
Yes South
Yes
West
No West
No West
Yes South
No South
283
483
514
681
357
569
balance <- Credit$Balance
region <as.factor (Credit$Region)
dat <- data.frame (region, balance)
str(dat)
##
region
## East 99
## South: 199
## West 102
##
##
##
11 No
11 Yes.
balance
:
Min.
1st Qu.:
Median
Mean
3rd Qu.: 863.00
0.00
68.75
459.50
: 520.01
Max. :1999.00
16 No
10 No
## 'data.frame':
400 obs. of 2 variables:
## $ region Factor w/ 3 levels "East", "South",..: 2 3 3 3 2 2 1 3 2 1 ...
## $ balance: num
333 903 580 964 331
summary (dat)
No
Yes
No
No
No
No
333
903
580
964
331
1151
Transcribed Image Text:500 1000 1500 2000 balance 0 East O South region West We wish to compare Balance in 3 different Region. • Region: A factor with levels East, South, and West indicating the individual's geographical location. Balance: Average credit card balance in $. The mean balance for East, South and West are denoted, respectively, by 1, 2 and 3. Data set library (ISLR2) head (Credit) 2 34 11 No 3 82 15 Yes ## Income Limit Rating Cards Age Education Own Student Married Region Balance ## 1 14.891 3606 ## 2 106.025 6645 ## 3 104.593 7075 ## 4 148.924 9504 ## 5 55.882 4897 ## 6 80.180 8047 4 71 3 36 2 68 4 77 Yes South Yes West No West No West Yes South No South 283 483 514 681 357 569 balance <- Credit$Balance region <as.factor (Credit$Region) dat <- data.frame (region, balance) str(dat) ## region ## East 99 ## South: 199 ## West 102 ## ## ## 11 No 11 Yes. balance : Min. 1st Qu.: Median Mean 3rd Qu.: 863.00 0.00 68.75 459.50 : 520.01 Max. :1999.00 16 No 10 No ## 'data.frame': 400 obs. of 2 variables: ## $ region Factor w/ 3 levels "East", "South",..: 2 3 3 3 2 2 1 3 2 1 ... ## $ balance: num 333 903 580 964 331 summary (dat) No Yes No No No No 333 903 580 964 331 1151
Regression model
The regression equation for ANOVA is given by
y = Bo + B₁ + region South + B + regionWest +
where ~ N(0,0²). The dummy variables regionSouth and regionWest are created by the 1m () function
and appear in the output below.
Fitting the ANOVA model and output from summary() and anova () functions
The following R code fit the ANOVA model with 1m () function and print outputs from summary() function
and anova () function.
anov_out <- lm (balance - region, data = dat)
summary (anov_out)
**
## Call:
## 1m (formula = balance - region, data = dat)
## Residuals:
Min
1Q Median
3Q
Max
## -531.00 -457.08 -63.25 339.25 1480.50
## Coefficients:
##
## (Intercept)
## regionSouth -12.50
## regionWest -18.69
Estimate Std. Error t value Pr(>1t|)
531.00
46.32 11.464 <2e-16 ***
56.68 -0.221
65.02 -0.287
## Signif. codes: 0*** 0.001 0.01 0.05 0.11
##
## Response: balance
##
## Residual standard error: 460.9 on 397 degrees of freedom
## Multiple R-squared: 0.0002188, Adjusted R-squared: -0.004818
## F-statistic: 0.04344 on 2 and 397 DF, p-value: 0.9575
anova (anov_out)
## Analysis of Variance Table
##
Box plot
0.826
0.774
Df
2
## region
## Residuals 397 84321458 212397
Sum Sq Mean Sq F value Pr(>F)
18454 9227 0.0434 0.9575
boxplot (balance - region, data = dat)
Transcribed Image Text:Regression model The regression equation for ANOVA is given by y = Bo + B₁ + region South + B + regionWest + where ~ N(0,0²). The dummy variables regionSouth and regionWest are created by the 1m () function and appear in the output below. Fitting the ANOVA model and output from summary() and anova () functions The following R code fit the ANOVA model with 1m () function and print outputs from summary() function and anova () function. anov_out <- lm (balance - region, data = dat) summary (anov_out) ** ## Call: ## 1m (formula = balance - region, data = dat) ## Residuals: Min 1Q Median 3Q Max ## -531.00 -457.08 -63.25 339.25 1480.50 ## Coefficients: ## ## (Intercept) ## regionSouth -12.50 ## regionWest -18.69 Estimate Std. Error t value Pr(>1t|) 531.00 46.32 11.464 <2e-16 *** 56.68 -0.221 65.02 -0.287 ## Signif. codes: 0*** 0.001 0.01 0.05 0.11 ## ## Response: balance ## ## Residual standard error: 460.9 on 397 degrees of freedom ## Multiple R-squared: 0.0002188, Adjusted R-squared: -0.004818 ## F-statistic: 0.04344 on 2 and 397 DF, p-value: 0.9575 anova (anov_out) ## Analysis of Variance Table ## Box plot 0.826 0.774 Df 2 ## region ## Residuals 397 84321458 212397 Sum Sq Mean Sq F value Pr(>F) 18454 9227 0.0434 0.9575 boxplot (balance - region, data = dat)
Expert Solution
steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman