we now wish to show that an infinite complete orthonormal set is never a basis in a Hilbert space. To this end suppose X is a Hilbert space and 'A is an infinite complete ortho- normal set in this space. Since A is assumed to be infinite, we can certainly extract a denumerable sequence of distinct points of A, X1, X2, X3, ... . Consider now the series 8 1 Since (1/k4) converges we can apply Theorem 9.5(1) to assert that 8 1 Σ k=1 where k=1 K Xar must converge to some xe X. Suppose now that A were a basis for X. If so, we could write x as some finite linear combination of basis elements; that is, we could write k² x = Vaxa + Xk + vv vs Ya, ..., Y, F. ..., X₂ € A and Now let j be any other index value different from a, 1 } = ( x,, ², ² x ) = Xk) = (Xj, YaXx + k == 1 which is ridiculous. Thus A cannot be a basis. v and compute + ₂x₁) = 0, Request Explota
we now wish to show that an infinite complete orthonormal set is never a basis in a Hilbert space. To this end suppose X is a Hilbert space and 'A is an infinite complete ortho- normal set in this space. Since A is assumed to be infinite, we can certainly extract a denumerable sequence of distinct points of A, X1, X2, X3, ... . Consider now the series 8 1 Since (1/k4) converges we can apply Theorem 9.5(1) to assert that 8 1 Σ k=1 where k=1 K Xar must converge to some xe X. Suppose now that A were a basis for X. If so, we could write x as some finite linear combination of basis elements; that is, we could write k² x = Vaxa + Xk + vv vs Ya, ..., Y, F. ..., X₂ € A and Now let j be any other index value different from a, 1 } = ( x,, ², ² x ) = Xk) = (Xj, YaXx + k == 1 which is ridiculous. Thus A cannot be a basis. v and compute + ₂x₁) = 0, Request Explota
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,