prove that an is bounded above.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Now prove that an is bounded above. This, too, is subtle.
• The Binomial Theorem tells us that
п(п - 1)
-x² +
2!
п(n - 1)(п — 2)
(1+ x)" = 1+ nx +
+...
3!
п(n - 1) -- (п - (п — 1))
(п — 1)!
n!
..
Deduce that
n
(1+)"
1
1
<1+1+
2!
(n – 1)!
3!
n!
• Show that
k!
for any positive integer k.
2k
• Deduce that
n
(1+ :)
<1+5
2k
k=0
and that the partial sum is < 2. Thus an < 3 for all n.
The Monotone Convergence Theorem tells us that the sequence converges to a limit
< 3. In fact, that limit is e.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1b2e65f2-c472-45bf-885c-00dffce84016%2F4174ad59-a5fe-4f57-9cd2-4a86ca204f65%2Foua1p9_processed.png&w=3840&q=75)
Transcribed Image Text:Now prove that an is bounded above. This, too, is subtle.
• The Binomial Theorem tells us that
п(п - 1)
-x² +
2!
п(n - 1)(п — 2)
(1+ x)" = 1+ nx +
+...
3!
п(n - 1) -- (п - (п — 1))
(п — 1)!
n!
..
Deduce that
n
(1+)"
1
1
<1+1+
2!
(n – 1)!
3!
n!
• Show that
k!
for any positive integer k.
2k
• Deduce that
n
(1+ :)
<1+5
2k
k=0
and that the partial sum is < 2. Thus an < 3 for all n.
The Monotone Convergence Theorem tells us that the sequence converges to a limit
< 3. In fact, that limit is e.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
In this question, we prove the sequence
is convergent by given porcedure.
i.e.
monotonic convergence theorem
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)