Water is the working fluid in an ideal regenerative Rankine cycle with one open feedwater heater. Steam enters the turbine at 1400 lbf/in.2 and 1000°F and expands to 120 lbf/in.2, where some of the steam is extracted and diverted to the open feedwater heater operating at 120 lbf/in.2 The remaining steam expands through the second-stage turbine to the condenser pressure of 6 lbf/in.2 Saturated liquid exits the open feedwater heater at 120 lbf/in.2 The net power output of the cycle is 1 x 108 Btu/h. Determine for the cycle: (a) the mass flow rate of steam entering the first stage of the turbine, in lb/h. (b) the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator. (c) the percent thermal efficiency.
Water is the working fluid in an ideal regenerative Rankine cycle with one open feedwater heater. Steam enters the turbine at 1400 lbf/in.2 and 1000°F and expands to 120 lbf/in.2, where some of the steam is extracted and diverted to the open feedwater heater operating at 120 lbf/in.2 The remaining steam expands through the second-stage turbine to the condenser pressure of 6 lbf/in.2 Saturated liquid exits the open feedwater heater at 120 lbf/in.2 The net power output of the cycle is 1 x 108 Btu/h.
Determine for the cycle:
(a) the mass flow rate of steam entering the first stage of the turbine, in lb/h.
(b) the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator.
(c) the percent thermal efficiency.
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 2 images