Water flows through a shower head steadily at a rate of 10 L/min. An electric resistance heater placed in the water pipe heats the water from 16 to 43°C. Taking the density of water to be 1 kg/L, determine the electric power input to the heater, in kW. In an effort to conserve energy, it is proposed to pass the drained warm water at a temperature of 39°C through a heat exchanger to preheat the incoming cold water. If the heat exchanger has an effectiveness of 0.50 (i.e., it recovers only half of the energy that can possibly be transferred from the drained water to incoming cold water), determine the electric power input required in this case. If the price of the electric energy is 11.5 ¢/kWh, determine how much money is saved during a 10-min shower as a result of installing this heat exchanger.
Latent heat and phase change
A physical process in which a conversion among the basic states or phases of matter, i.e., solid, liquid, and gas takes place under the effect of a certain temperature and pressure is referred to as a phase change. Generally, the phase change of a substance occurs when heat transfer takes place between the substance and its surroundings. Based on the direction in which heat transfer takes place, different types of phase changes can occur.
Triple Point of Water
The branch of physics in which observer deals with temperature related properties is called thermodynamics.
Boiling Point of Water
Everyday examples of boiling is, boiling milk, heating water. One would have observed that when we heat water it goes through various stages and at one point bubbles show in water, and water keeps splashing with bubbles bursting, we in layman terms say that water is boiling.
Freezing Point of Water
In general, the freezing point of water is 0° Celsius, or 32° Fahrenheit. This is the temperature at which water will ordinarily change from its liquid state to its solid state (ice). However, there are certain conditions that can affect the freezing point of water. For example, a liquid may be supercooled or contain impurities so that it does not freeze at the ordinary freezing point.
Water flows through a shower head steadily at a rate
of 10 L/min. An electric resistance heater placed in the water
pipe heats the water from 16 to 43°C. Taking the density of
water to be 1 kg/L, determine the electric power input to the
heater, in kW.
In an effort to conserve energy, it is proposed to pass the
drained warm water at a temperature of 39°C through a heat
exchanger to preheat the incoming cold water. If the heat
exchanger has an effectiveness of 0.50 (i.e., it recovers only half
of the energy that can possibly be transferred from the drained
water to incoming cold water), determine the electric power
input required in this case. If the price of the electric energy
is 11.5 ¢/kWh, determine how much money is saved during a
10-min shower as a result of installing this heat exchanger.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images