W AutoSave Off Project Proposal.docx v Search File Home Insert Draw Design Layout References Mailings Review View Help Foxit PDF Impact (Body) ▾ 18 ✓ A A Aa P T Normal Strong Paste BIU ab X X A ✓ A EVENT HEven Clipboard ☑ Font √☑ Paragraph √☑ PROJECT PROPOSAL Dataset: https://www.kaggle.com/datasets/mrsimple07/car-prices- prediction-data Project description: I chose this dataset so that I would be able to work on developing a predictive model for car prices estimation. I will be able to achieve developing the model by analyzing the features like make, model, mileage, condition so in the end that same model will predict the car's price. Approach: For my project, I plan to use linear regression and neural networks. I chose these two algorithms because in my opinion they will work the best for the project. Considering that linear regression is simple but effective for prediction of continuous values for example the car prices and it will provide me results that will be easy to understand, I will use it as the baseline model. On the other hand, the neural networks will help me, particularly the deep learning models to handle the complex patterns in the data which will help me with improving prediction accuracy. I will start with preprocessing the data, then I will split the dataset into training and testing sets. Next is training of both models, the linear regression as baseline and the neural networks to capture the complex patterns. After training them I will compare their performance. In the end I will choose the better model and try to improve it by deploying it with new and unseen data. I will be working in Python. Goal: Page 1 of 2 256 words M English (United States) Accessibility: Investigate 76°F Q Search Partly cloudy Styles My goal is to predict effectively car prices. I aim to achieve this by optimizing the algorithms that I chose and fine-tuning the model parameters. И །། M | | > | > Elena Zdravkoska EZ 0 ☑ Comments Find ▾ Editing Share ▾ ठूল ย Dictate Editor Add-ins Replace Select √ Editing Voice Editor Add-ins Focus > 88 ENG 12:52 PM 8/5/2024 D 50% PRE

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

hey, i have to make this project but i am stuck. i have to work on kaggle with a chosen dataset. this is the project proporsal i have sent to the professor which includes the dataset link. i am a begginer and i cant find anyone to help me or information that i understand online to make the project. i would appreciate some help, it shpuld be really basic and addaptable for a very very begginer. any kind of help is appreciated. the project is for data mining and machine learning

W
AutoSave
Off
Project Proposal.docx v
Search
File
Home Insert Draw
Design Layout References Mailings Review View Help
Foxit PDF
Impact (Body)
▾ 18 ✓
A A Aa P
T
Normal
Strong
Paste
BIU ab X X A
✓
A
EVENT HEven
Clipboard
☑
Font
√☑
Paragraph
√☑
PROJECT PROPOSAL
Dataset: https://www.kaggle.com/datasets/mrsimple07/car-prices-
prediction-data
Project description:
I chose this dataset so that I would be able to work on developing a
predictive model for car prices estimation. I will be able to achieve
developing the model by analyzing the features like make, model,
mileage, condition so in the end that same model will predict the car's
price.
Approach:
For my project, I plan to use linear regression and neural networks. I
chose these two algorithms because in my opinion they will work the
best for the project. Considering that linear regression is simple but
effective for prediction of continuous values for example the car prices
and it will provide me results that will be easy to understand, I will use
it as the baseline model. On the other hand, the neural networks will
help me, particularly the deep learning models to handle the complex
patterns in the data which will help me with improving prediction
accuracy. I will start with preprocessing the data, then I will split the
dataset into training and testing sets. Next is training of both models,
the linear regression as baseline and the neural networks to capture
the complex patterns. After training them I will compare their
performance. In the end I will choose the better model and try to
improve it by deploying it with new and unseen data. I will be working
in Python.
Goal:
Page 1 of 2
256 words M
English (United States)
Accessibility: Investigate
76°F
Q Search
Partly cloudy
Styles
My goal is to predict effectively car prices. I aim to achieve this by
optimizing the algorithms that I chose and fine-tuning the model
parameters.
И
།།
M
| | > | >
Elena Zdravkoska
EZ
0
☑
Comments
Find ▾
Editing
Share ▾ ठूল
ย
Dictate Editor Add-ins
Replace
Select
√
Editing
Voice
Editor
Add-ins
Focus
>
88
ENG
12:52 PM
8/5/2024
D
50%
PRE
Transcribed Image Text:W AutoSave Off Project Proposal.docx v Search File Home Insert Draw Design Layout References Mailings Review View Help Foxit PDF Impact (Body) ▾ 18 ✓ A A Aa P T Normal Strong Paste BIU ab X X A ✓ A EVENT HEven Clipboard ☑ Font √☑ Paragraph √☑ PROJECT PROPOSAL Dataset: https://www.kaggle.com/datasets/mrsimple07/car-prices- prediction-data Project description: I chose this dataset so that I would be able to work on developing a predictive model for car prices estimation. I will be able to achieve developing the model by analyzing the features like make, model, mileage, condition so in the end that same model will predict the car's price. Approach: For my project, I plan to use linear regression and neural networks. I chose these two algorithms because in my opinion they will work the best for the project. Considering that linear regression is simple but effective for prediction of continuous values for example the car prices and it will provide me results that will be easy to understand, I will use it as the baseline model. On the other hand, the neural networks will help me, particularly the deep learning models to handle the complex patterns in the data which will help me with improving prediction accuracy. I will start with preprocessing the data, then I will split the dataset into training and testing sets. Next is training of both models, the linear regression as baseline and the neural networks to capture the complex patterns. After training them I will compare their performance. In the end I will choose the better model and try to improve it by deploying it with new and unseen data. I will be working in Python. Goal: Page 1 of 2 256 words M English (United States) Accessibility: Investigate 76°F Q Search Partly cloudy Styles My goal is to predict effectively car prices. I aim to achieve this by optimizing the algorithms that I chose and fine-tuning the model parameters. И །། M | | > | > Elena Zdravkoska EZ 0 ☑ Comments Find ▾ Editing Share ▾ ठूল ย Dictate Editor Add-ins Replace Select √ Editing Voice Editor Add-ins Focus > 88 ENG 12:52 PM 8/5/2024 D 50% PRE
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education