PLEASE SHOW ALL WORK AND COMMENT ALL CODE The Objective of this coding problem is the prediction of a proposed metro ectension construction project based on the people'es opinion. There are three alternatives to choose they are as follows: Eglington-Pickering Line Airport-Vaughn Line Airposrt-Hamilton Line Each record is represented by 16 features. Task-1: Metro-Ext.xlsx is the training and test dataset; you will considerr 80% of the data for training and 20% for the test. Build (1) Logistic regression (2) KNN and (3) Naive Bayes model to predict on the test data set and compute the confusion matrix for each model and compare the result.  deliverables = coding files (.py and .ipynb), and a discussions of confusion matrix for both models   metro-EXT.xlsx (Please place chart in EXCEL) Feasibility and Constructability Slopes and Gradients Urban Realm Geology and Soil Stability Land Acquisition Work Opportunities Economy in Movement of People Revenue Generation Access to the Social, Recreational and Emergency Services Neighbourhood Acceptance (Sound, Vibration, etc) Improvement of Quality of Life Convenience in Movement of People Protection of the Ecosystem Pollution (Water, Air, Soil, Visual) Control CO2 Emission Control Conservation of Vegetation and Plants 4.1 3.1 3.2 4.3 3.1 3.5 3.3 3.9 3.9 2.8 3.1 3.7 3.1 3.4 2.4 2.9 3.7 2.8 2.9 4.1 3.9 4.5 4.3 3.7 3.6 2.1 3.3 4.3 2.8 2.9 3.0 3.0 4.1 3.2 2.4 3.8 3.4 4.3 4.7 4.2 4.7 1.9 2.4 4.5 3.7 3.6 3.4 2.3 3.6 3.2 2.2 4.0 4.0 4.6 3.9 3.3 4.4 2.0 3.5 3.9 3.2 2.9 2.9 2.4 3.7 3.0 3.3 3.6 4.1 3.5 3.9 3.9 4.8 1.9 3.3 4.2 2.6 2.4 2.6 2.8 3.9 2.5 3.3 4.5 3.5 3.4 3.8 3.7 3.5 1.7 3.0 4.5 3.0 3.5 2.9 2.6 4.8 3.9 2.9 4.5 3.4 4.3 4.5 4.5 3.8 2.0 3.1 4.7 3.1 2.9 2.5 3.7 3.3 3.1 3.0 4.1 4.1 4.4 4.4 3.6 4.0 1.9 2.9 4.1 3.4 2.2 3.7 3.3 4.7 3.3 3.2 3.9 4.0 4.2 4.2 3.8 4.0 2.3 3.0 4.5 3.1 3.1 3.0 2.7 4.2 3.0 2.9 3.7 3.9 3.7 3.2 4.0 4.6 1.9 2.4 4.4 2.7 3.0 3.4 2.9 4.3 2.7 3.2 3.8 3.9 4.2 4.0 3.8 4.3 1.7 3.0 4.2 3.5 2.8 3.1 2.2 4.2 3.2 3.0 4.3 4.0 4.0 4.4 4.9 3.8 1.5 3.4 3.4 2.9 2.6 3.3 3.5 4.1 3.2 3.0 3.9 3.8 4.2 4.2 4.0 3.7 1.8 2.7 4.3 3.2 2.3 3.8 3.4 4.0 2.7 3.6 4.5 3.9 3.8 3.3 4.0 4.2 2.5 2.7 3.5 3.2 2.8 3.5 3.9 3.9 3.3 2.5 4.0 4.7 3.7 3.9 3.9 4.1 1.5 3.5 4.0 3.1 2.6 3.0 3.0 3.5 3.4 2.6 3.3 4.0 3.9 4.4 4.4 4.3 2.2 2.8 4.4 3.1 3.4 3.0 3.2 2.8 2.9 3.6 2.4 2.9 4.2 2.9 2.3 2.2 2.3 2.8 2.9 2.5 3.5 1.4 2.5 3.0 2.0 3.2 1.7 2.3 4.1 2.1 2.3 3.3 1.9 2.4 2.3 2.6 3.2 2.0 3.4 3.5 1.5 2.9 2.1 3.3 3.4 2.7 3.4 3.2 1.7 3.6 2.5 3.0 3.1 2.4 3.6 3.0 2.3 2.9 1.4 3.5 3.6 3.0 3.0 3.4 2.0 2.8 3.5 2.7 3.0 1.4 2.6 3.2 2.0 2.6 2.4 3.4 3.7 2.3 3.3 3.9 2.7 3.2 3.4 2.9 2.6 1.3 3.1 2.1 2.2 3.3 1.5 2.7 3.7 3.5 3.1 3.1 2.4 2.9 2.7 3.3 2.9 1.7 2.8 3.5 2.4 3.7 2.8 3.0 4.8 3.3 3.6 3.3 2.4 3.1 3.1 3.4 3.0 1.8 2.8 2.6 2.0 2.3 2.0 3.3 3.8 3.1 3.1 3.0 1.9 3.8 2.6 2.7 2.6 2.4 2.7 3.8 2.3 3.4 2.5 3.6 4.2 3.1 2.6 2.6 2.5 2.7 2.7 3.0 2.9 1.3 3.8 3.3 2.4 2.3 2.2 2.9 3.7 2.6 3.0 2.8 1.3 3.7 2.8 2.7 3.1 2.1 2.3 2.7 1.5 2.3 1.6 3.3 3.5 3.1 2.5 3.1 1.9 3.6 3.6 3.0 3.1 2.0 3.3 3.6 2.0 2.9 2.5 3.6 3.3 2.7 3.1 2.7 2.1 3.1 2.3 3.8 3.0 1.4 2.8 2.6 1.8 3.5 1.8 3.5 4.3 3.1 3.6 3.2 2.0 3.3 2.7 3.2 3.9 2.0 3.8 3.9 1.8 3.0 2.0 2.2 3.3 2.3 3.2 2.8 2.4 2.8 2.6 3.0 2.6 1.5 3.1 3.4 1.8 2.4 1.7 2.7 3.6 3.8 2.8 3.0 1.7 3.3 2.5 3.7 3.0 1.8 3.6 1.2 3.3 2.8 3.1 2.0 3.2 3.2 2.9 2.0 1.7 2.2 2.8 3.1 3.4 1.9 1.1 1.8 2.6 2.9 3.0 2.7 3.8 2.8 2.8 2.4 1.8 3.2 2.9 3.1 2.5 1.9 2.9 1.9 3.2 3.0 3.9 2.7 4.3 2.6 2.9 2.2 1.9 3.3 2.4 2.8 3.2 1.9 1.8 2.3 3.2 3.0 3.5 2.1 3.5 2.3 2.7 2.5 1.6 3.6 2.5 3.8 2.4 2.5 1.7 2.2 2.9 2.3 3.3 2.1 3.9 3.0 2.9 1.2 2.3 3.3 3.1 2.2 2.8 2.7 1.9 2.2 3.3 3.1 2.5 1.5 4.3 3.9 3.9 2.1 1.7 3.1 3.0 2.8 3.0 2.7 2.2 1.7 3.1 2.3 2.4 2.1 3.8 3.3 3.5 1.4 2.4 2.7 2.4 3.5 3.0 1.4 2.0 2.4 3.2 2.8 3.3 1.5 4.0 3.0 3.5 2.4 1.8 3.3 2.8 3.6 2.9 2.2 2.4 2.1 3.2 2.7 2.6 2.0 3.8 2.9 3.2 1.4 1.6 3.8 3.2 3.3 3.7 1.4 2.0 2.0 3.0 3.1 3.2 1.9 3.8 2.8 2.9 2.2 2.2 3.6 3.0 2.5 2.4 1.7 2.2 2.4 3.0 2.5 3.0 2.3 4.2 2.8 3.1 2.3 2.1 2.9 3.4 3.2 3.0 2.2 1.9 1.8 2.7 2.7 3.2 2.4 3.4 2.5 3.3 2.5 1.5 2.9 2.5 3.3 3.8 2.1 2.0 1.8 3.4 2.8 3.1 2.1 4.3 2.7 3.4 2.7 2.5 3.1 2.3 3.1 3.4 1.8 2.3 2.0 3.7 2.7 3.0 2.1 4.8 3.2 3.0 1.9 2.1 2.6 2.4 2.9 2.6 2.0 1.5 1.8 2.9 2.9

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

PLEASE SHOW ALL WORK AND COMMENT ALL CODE

The Objective of this coding problem is the prediction of a proposed metro ectension construction project based on the people'es opinion. There are three alternatives to choose they are as follows:

  • Eglington-Pickering Line
  • Airport-Vaughn Line
  • Airposrt-Hamilton Line

Each record is represented by 16 features.

Task-1:

Metro-Ext.xlsx is the training and test dataset; you will considerr 80% of the data for training and 20% for the test. Build (1) Logistic regression (2) KNN and (3) Naive Bayes model to predict on the test data set and compute the confusion matrix for each model and compare the result. 

deliverables = coding files (.py and .ipynb), and a discussions of confusion matrix for both models

 

metro-EXT.xlsx (Please place chart in EXCEL)

Feasibility and Constructability Slopes and Gradients Urban Realm Geology and Soil Stability Land Acquisition Work Opportunities Economy in Movement of People Revenue Generation Access to the Social, Recreational and Emergency Services Neighbourhood Acceptance (Sound, Vibration, etc) Improvement of Quality of Life Convenience in Movement of People Protection of the Ecosystem Pollution (Water, Air, Soil, Visual) Control CO2 Emission Control Conservation of Vegetation and Plants
4.1 3.1 3.2 4.3 3.1 3.5 3.3 3.9 3.9 2.8 3.1 3.7 3.1 3.4 2.4 2.9
3.7 2.8 2.9 4.1 3.9 4.5 4.3 3.7 3.6 2.1 3.3 4.3 2.8 2.9 3.0 3.0
4.1 3.2 2.4 3.8 3.4 4.3 4.7 4.2 4.7 1.9 2.4 4.5 3.7 3.6 3.4 2.3
3.6 3.2 2.2 4.0 4.0 4.6 3.9 3.3 4.4 2.0 3.5 3.9 3.2 2.9 2.9 2.4
3.7 3.0 3.3 3.6 4.1 3.5 3.9 3.9 4.8 1.9 3.3 4.2 2.6 2.4 2.6 2.8
3.9 2.5 3.3 4.5 3.5 3.4 3.8 3.7 3.5 1.7 3.0 4.5 3.0 3.5 2.9 2.6
4.8 3.9 2.9 4.5 3.4 4.3 4.5 4.5 3.8 2.0 3.1 4.7 3.1 2.9 2.5 3.7
3.3 3.1 3.0 4.1 4.1 4.4 4.4 3.6 4.0 1.9 2.9 4.1 3.4 2.2 3.7 3.3
4.7 3.3 3.2 3.9 4.0 4.2 4.2 3.8 4.0 2.3 3.0 4.5 3.1 3.1 3.0 2.7
4.2 3.0 2.9 3.7 3.9 3.7 3.2 4.0 4.6 1.9 2.4 4.4 2.7 3.0 3.4 2.9
4.3 2.7 3.2 3.8 3.9 4.2 4.0 3.8 4.3 1.7 3.0 4.2 3.5 2.8 3.1 2.2
4.2 3.2 3.0 4.3 4.0 4.0 4.4 4.9 3.8 1.5 3.4 3.4 2.9 2.6 3.3 3.5
4.1 3.2 3.0 3.9 3.8 4.2 4.2 4.0 3.7 1.8 2.7 4.3 3.2 2.3 3.8 3.4
4.0 2.7 3.6 4.5 3.9 3.8 3.3 4.0 4.2 2.5 2.7 3.5 3.2 2.8 3.5 3.9
3.9 3.3 2.5 4.0 4.7 3.7 3.9 3.9 4.1 1.5 3.5 4.0 3.1 2.6 3.0 3.0
3.5 3.4 2.6 3.3 4.0 3.9 4.4 4.4 4.3 2.2 2.8 4.4 3.1 3.4 3.0 3.2
2.8 2.9 3.6 2.4 2.9 4.2 2.9 2.3 2.2 2.3 2.8 2.9 2.5 3.5 1.4 2.5
3.0 2.0 3.2 1.7 2.3 4.1 2.1 2.3 3.3 1.9 2.4 2.3 2.6 3.2 2.0 3.4
3.5 1.5 2.9 2.1 3.3 3.4 2.7 3.4 3.2 1.7 3.6 2.5 3.0 3.1 2.4 3.6
3.0 2.3 2.9 1.4 3.5 3.6 3.0 3.0 3.4 2.0 2.8 3.5 2.7 3.0 1.4 2.6
3.2 2.0 2.6 2.4 3.4 3.7 2.3 3.3 3.9 2.7 3.2 3.4 2.9 2.6 1.3 3.1
2.1 2.2 3.3 1.5 2.7 3.7 3.5 3.1 3.1 2.4 2.9 2.7 3.3 2.9 1.7 2.8
3.5 2.4 3.7 2.8 3.0 4.8 3.3 3.6 3.3 2.4 3.1 3.1 3.4 3.0 1.8 2.8
2.6 2.0 2.3 2.0 3.3 3.8 3.1 3.1 3.0 1.9 3.8 2.6 2.7 2.6 2.4 2.7
3.8 2.3 3.4 2.5 3.6 4.2 3.1 2.6 2.6 2.5 2.7 2.7 3.0 2.9 1.3 3.8
3.3 2.4 2.3 2.2 2.9 3.7 2.6 3.0 2.8 1.3 3.7 2.8 2.7 3.1 2.1 2.3
2.7 1.5 2.3 1.6 3.3 3.5 3.1 2.5 3.1 1.9 3.6 3.6 3.0 3.1 2.0 3.3
3.6 2.0 2.9 2.5 3.6 3.3 2.7 3.1 2.7 2.1 3.1 2.3 3.8 3.0 1.4 2.8
2.6 1.8 3.5 1.8 3.5 4.3 3.1 3.6 3.2 2.0 3.3 2.7 3.2 3.9 2.0 3.8
3.9 1.8 3.0 2.0 2.2 3.3 2.3 3.2 2.8 2.4 2.8 2.6 3.0 2.6 1.5 3.1
3.4 1.8 2.4 1.7 2.7 3.6 3.8 2.8 3.0 1.7 3.3 2.5 3.7 3.0 1.8 3.6
1.2 3.3 2.8 3.1 2.0 3.2 3.2 2.9 2.0 1.7 2.2 2.8 3.1 3.4 1.9 1.1
1.8 2.6 2.9 3.0 2.7 3.8 2.8 2.8 2.4 1.8 3.2 2.9 3.1 2.5 1.9 2.9
1.9 3.2 3.0 3.9 2.7 4.3 2.6 2.9 2.2 1.9 3.3 2.4 2.8 3.2 1.9 1.8
2.3 3.2 3.0 3.5 2.1 3.5 2.3 2.7 2.5 1.6 3.6 2.5 3.8 2.4 2.5 1.7
2.2 2.9 2.3 3.3 2.1 3.9 3.0 2.9 1.2 2.3 3.3 3.1 2.2 2.8 2.7 1.9
2.2 3.3 3.1 2.5 1.5 4.3 3.9 3.9 2.1 1.7 3.1 3.0 2.8 3.0 2.7 2.2
1.7 3.1 2.3 2.4 2.1 3.8 3.3 3.5 1.4 2.4 2.7 2.4 3.5 3.0 1.4 2.0
2.4 3.2 2.8 3.3 1.5 4.0 3.0 3.5 2.4 1.8 3.3 2.8 3.6 2.9 2.2 2.4
2.1 3.2 2.7 2.6 2.0 3.8 2.9 3.2 1.4 1.6 3.8 3.2 3.3 3.7 1.4 2.0
2.0 3.0 3.1 3.2 1.9 3.8 2.8 2.9 2.2 2.2 3.6 3.0 2.5 2.4 1.7 2.2
2.4 3.0 2.5 3.0 2.3 4.2 2.8 3.1 2.3 2.1 2.9 3.4 3.2 3.0 2.2 1.9
1.8 2.7 2.7 3.2 2.4 3.4 2.5 3.3 2.5 1.5 2.9 2.5 3.3 3.8 2.1 2.0
1.8 3.4 2.8 3.1 2.1 4.3 2.7 3.4 2.7 2.5 3.1 2.3 3.1 3.4 1.8 2.3
2.0 3.7 2.7 3.0 2.1 4.8 3.2 3.0 1.9 2.1 2.6 2.4 2.9 2.6 2.0 1.5
1.8 2.9 2.9 3.1 1.8 3.9 3.8 3.4 2.1 1.8 4.0 2.4 2.8 3.7 2.9 2.9
Expert Solution
steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Knowledge Booster
Fundamentals of Datawarehouse
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education