VP5.22.2 A competition cyclist rides at a constant 12.5 m/s around a curve that is banked at 40.0°. The cyclist and her bicycle have a com- bined mass of 64.0 kg. (a) What must be the radius of her turn if there is to be no friction force pushing her either up or down the banked curve? (b) What is the magnitude of her acceleration? (c) What is the magni- tude of the normal force that the surface of the banked curve exerts on the bicycle?
VP5.22.2 A competition cyclist rides at a constant 12.5 m/s around a curve that is banked at 40.0°. The cyclist and her bicycle have a com- bined mass of 64.0 kg. (a) What must be the radius of her turn if there is to be no friction force pushing her either up or down the banked curve? (b) What is the magnitude of her acceleration? (c) What is the magni- tude of the normal force that the surface of the banked curve exerts on the bicycle?
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![VP5.22.2 A competition cyclist rides at a constant 12.5 m/s around a
curve that is banked at 40.0°. The cyclist and her bicycle have a com-
bined mass of 64.0 kg. (a) What must be the radius of her turn if there is
to be no friction force pushing her either up or down the banked curve?
(b) What is the magnitude of her acceleration? (c) What is the magni-
tude of the normal force that the surface of the banked curve exerts on
the bicycle?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2eddcd7e-11e4-4446-bac9-23301b2ccefe%2F43fd08af-a546-4464-98db-d25c3c539146%2Fvb1tbfi_processed.png&w=3840&q=75)
Transcribed Image Text:VP5.22.2 A competition cyclist rides at a constant 12.5 m/s around a
curve that is banked at 40.0°. The cyclist and her bicycle have a com-
bined mass of 64.0 kg. (a) What must be the radius of her turn if there is
to be no friction force pushing her either up or down the banked curve?
(b) What is the magnitude of her acceleration? (c) What is the magni-
tude of the normal force that the surface of the banked curve exerts on
the bicycle?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Given Data:
The uniform velocity of the cycle,
The total mass of bicycle and cyclist,
The angle of banking,
The figure below represents the free body diagram of the bicycle.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY