Vi v₁ = 1. Let U span (G.D) be a subspace of R³. Answer the following questions based on this given U and the use of the dot product as the inner product: (a) Find a basis for U. basis -B (b) Let x = i. Using the basis you found in (a), create a matrix B and use this matrix to find the coordinate vector, A, of x in terms of subspace U. pointe) [ ] ii. Using your answer in (b), compute Tu(x), the orthogonal pro- jection of x onto the subspace U. pts)
Vi v₁ = 1. Let U span (G.D) be a subspace of R³. Answer the following questions based on this given U and the use of the dot product as the inner product: (a) Find a basis for U. basis -B (b) Let x = i. Using the basis you found in (a), create a matrix B and use this matrix to find the coordinate vector, A, of x in terms of subspace U. pointe) [ ] ii. Using your answer in (b), compute Tu(x), the orthogonal pro- jection of x onto the subspace U. pts)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem 1: Subspace and Projection**
Let \( U = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} \) be a subspace of \( \mathbb{R}^3 \). Answer the following questions based on this given \( U \) and the use of the dot product as the inner product.
(a) **Find a Basis for \( U \).**
- **Solution:** The basis for \( U \) is \( \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} \).
(b) Let \( x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \).
i. **Using the basis you found in (a), create a matrix \( B \) and use this matrix to find the coordinate vector, \(\lambda\), of \( x \) in terms of subspace \( U \).**
- **Solution:** Write the vector \( x \) as a linear combination of the basis vectors. Find the coefficients that satisfy:
\[
x = \lambda_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}
\]
Solve for \(\lambda_1\) and \(\lambda_2\).
ii. **Using your answer in (b), compute \(\pi_U(x)\), the orthogonal projection of \( x \) onto the subspace \( U \).**
- **Solution:** Use the formula for orthogonal projection:
\[
\pi_U(x) = \sum_{i=1}^{2} \frac{\langle x, v_i \rangle}{\langle v_i, v_i \rangle} v_i
\]
Where \( v_1 \) and \( v_2 \) are the basis vectors.
This problem involves finding a basis for a given subspace, expressing a vector as a linear combination](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e25041d-7573-46df-b9d3-ec2dd7694c16%2F49ca124d-2aef-4a83-a604-b3caa5310560%2F44qvi7g_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 1: Subspace and Projection**
Let \( U = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} \) be a subspace of \( \mathbb{R}^3 \). Answer the following questions based on this given \( U \) and the use of the dot product as the inner product.
(a) **Find a Basis for \( U \).**
- **Solution:** The basis for \( U \) is \( \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} \).
(b) Let \( x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \).
i. **Using the basis you found in (a), create a matrix \( B \) and use this matrix to find the coordinate vector, \(\lambda\), of \( x \) in terms of subspace \( U \).**
- **Solution:** Write the vector \( x \) as a linear combination of the basis vectors. Find the coefficients that satisfy:
\[
x = \lambda_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}
\]
Solve for \(\lambda_1\) and \(\lambda_2\).
ii. **Using your answer in (b), compute \(\pi_U(x)\), the orthogonal projection of \( x \) onto the subspace \( U \).**
- **Solution:** Use the formula for orthogonal projection:
\[
\pi_U(x) = \sum_{i=1}^{2} \frac{\langle x, v_i \rangle}{\langle v_i, v_i \rangle} v_i
\]
Where \( v_1 \) and \( v_2 \) are the basis vectors.
This problem involves finding a basis for a given subspace, expressing a vector as a linear combination
![(c) Using the Gram-Schmidt orthogonalization, turn the basis of \( U \) you got in (a) into an orthogonal basis.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e25041d-7573-46df-b9d3-ec2dd7694c16%2F49ca124d-2aef-4a83-a604-b3caa5310560%2Fgm5sfm_processed.jpeg&w=3840&q=75)
Transcribed Image Text:(c) Using the Gram-Schmidt orthogonalization, turn the basis of \( U \) you got in (a) into an orthogonal basis.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)