Find the coordinate vector [x]g of x relative to the given basis B = {b₁,b₂, b3}. 1 b₁ = -1, b₂ = -5 [x]B= = (Simplify your answer.) 3 4, b3 = 15 2 -2, X= 4 2 -1 18
Find the coordinate vector [x]g of x relative to the given basis B = {b₁,b₂, b3}. 1 b₁ = -1, b₂ = -5 [x]B= = (Simplify your answer.) 3 4, b3 = 15 2 -2, X= 4 2 -1 18
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Problem: Finding the Coordinate Vector**
**Objective:**
Find the coordinate vector \([x]_B\) of \(x\) relative to the given basis \(B = \{b_1, b_2, b_3\}\).
**Given:**
- \(b_1 = \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix}\),
- \(b_2 = \begin{bmatrix} -3 \\ 4 \\ 15 \end{bmatrix}\),
- \(b_3 = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}\)
The vector \(x\) is:
- \(x = \begin{bmatrix} 2 \\ -1 \\ 18 \end{bmatrix}\)
**Task:**
Determine \([x]_B\).
Please simplify your answer before finalizing.
**Solution:**
To find \([x]_B\), express \(x\) as a linear combination of the basis vectors \(b_1, b_2,\) and \(b_3\). This involves solving the following equation for the coefficients \(c_1, c_2,\) and \(c_3\):
\[ x = c_1b_1 + c_2b_2 + c_3b_3 \]
After solving, present the answer as a vector:
\[ [x]_B = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \]
**Note:** Remember to verify the solution by substituting the coefficients back into the equation and confirming the equality with \(x\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F80a45a6e-0b8a-4aa3-8be8-79493f18df43%2F8fd939f6-9599-482f-96cf-e2d4e8881f8c%2F7hr0cq_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem: Finding the Coordinate Vector**
**Objective:**
Find the coordinate vector \([x]_B\) of \(x\) relative to the given basis \(B = \{b_1, b_2, b_3\}\).
**Given:**
- \(b_1 = \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix}\),
- \(b_2 = \begin{bmatrix} -3 \\ 4 \\ 15 \end{bmatrix}\),
- \(b_3 = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}\)
The vector \(x\) is:
- \(x = \begin{bmatrix} 2 \\ -1 \\ 18 \end{bmatrix}\)
**Task:**
Determine \([x]_B\).
Please simplify your answer before finalizing.
**Solution:**
To find \([x]_B\), express \(x\) as a linear combination of the basis vectors \(b_1, b_2,\) and \(b_3\). This involves solving the following equation for the coefficients \(c_1, c_2,\) and \(c_3\):
\[ x = c_1b_1 + c_2b_2 + c_3b_3 \]
After solving, present the answer as a vector:
\[ [x]_B = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \]
**Note:** Remember to verify the solution by substituting the coefficients back into the equation and confirming the equality with \(x\).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education