Find the vector x determined by the given coordinate vector [x]p and the given basis B. 1. -5 -3 2. (Simplify your answers.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Solution:**

To determine the vector \( \mathbf{x} \) given the provided coordinate vector \( [\mathbf{x}]_B \) and the basis \( B \), we use the following information:

Given:
\[ B = \left\{ \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \begin{pmatrix} -5 \\ 3 \end{pmatrix} \right\} \]
\[ [\mathbf{x}]_B = \begin{pmatrix} 5 \\ 2 \end{pmatrix} \]

We can express \( \mathbf{x} \) as a linear combination of the basis vectors in \( B \). Specifically,

\[ \mathbf{x} = 5 \begin{pmatrix} 1 \\ -3 \end{pmatrix} + 2 \begin{pmatrix} -5 \\ 3 \end{pmatrix} \]

Let's perform the calculations step by step:

1. Calculate \( 5 \begin{pmatrix} 1 \\ -3 \end{pmatrix} \):

   \[ 5 \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \times 1 \\ 5 \times -3 \end{pmatrix} = \begin{pmatrix} 5 \\ -15 \end{pmatrix} \]

2. Calculate \( 2 \begin{pmatrix} -5 \\ 3 \end{pmatrix} \):

   \[ 2 \begin{pmatrix} -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \times -5 \\ 2 \times 3 \end{pmatrix} = \begin{pmatrix} -10 \\ 6 \end{pmatrix} \]

3. Add the resulting vectors:

   \[ \mathbf{x} = \begin{pmatrix} 5 \\ -15 \end{pmatrix} + \begin{pmatrix} -10 \\ 6 \end{pmatrix} = \begin{pmatrix} 5 + (-10) \\ -15 + 6 \end{pmatrix} = \begin{pmatrix} -5 \\ -9 \end{pmatrix} \]

Thus, the vector \( \mathbf{x} \) is:
\[ \mathbf{x} =
Transcribed Image Text:**Solution:** To determine the vector \( \mathbf{x} \) given the provided coordinate vector \( [\mathbf{x}]_B \) and the basis \( B \), we use the following information: Given: \[ B = \left\{ \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \begin{pmatrix} -5 \\ 3 \end{pmatrix} \right\} \] \[ [\mathbf{x}]_B = \begin{pmatrix} 5 \\ 2 \end{pmatrix} \] We can express \( \mathbf{x} \) as a linear combination of the basis vectors in \( B \). Specifically, \[ \mathbf{x} = 5 \begin{pmatrix} 1 \\ -3 \end{pmatrix} + 2 \begin{pmatrix} -5 \\ 3 \end{pmatrix} \] Let's perform the calculations step by step: 1. Calculate \( 5 \begin{pmatrix} 1 \\ -3 \end{pmatrix} \): \[ 5 \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \times 1 \\ 5 \times -3 \end{pmatrix} = \begin{pmatrix} 5 \\ -15 \end{pmatrix} \] 2. Calculate \( 2 \begin{pmatrix} -5 \\ 3 \end{pmatrix} \): \[ 2 \begin{pmatrix} -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \times -5 \\ 2 \times 3 \end{pmatrix} = \begin{pmatrix} -10 \\ 6 \end{pmatrix} \] 3. Add the resulting vectors: \[ \mathbf{x} = \begin{pmatrix} 5 \\ -15 \end{pmatrix} + \begin{pmatrix} -10 \\ 6 \end{pmatrix} = \begin{pmatrix} 5 + (-10) \\ -15 + 6 \end{pmatrix} = \begin{pmatrix} -5 \\ -9 \end{pmatrix} \] Thus, the vector \( \mathbf{x} \) is: \[ \mathbf{x} =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,