Verify the identity. sin(x) + cos(x) = sin(x) cos(x) sec(x) + csc(x) sin(x) + cos(x) sec(x) + csc(x) = sin(x)+cos(x) cos(x) + sin(x) sin(x) + cos(x) sin(x) + cos(x) 1 (sin(x) + cos(x)) = cos(x) sin(x) cos(x) sin(x) + cos(x)

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
alt
9
Verify the identity.
esc
Z
JABL
2
a
sin(x) + cos(x)
sec(x) + csc(x)
Z
sin(x) + cos(x)
sec(x) + csc(x)
W
S
X
# 3
=
e
= sin(x) cos(x)
d
sin(x) + cos(x)
1
1
cos(x)
sin(x)
= (sin(x) + cos(x))
с
sin(x) + cos(x)
sin(x) + cos(x)
= cos(x) sin(x)
+
с
$
4
r
F
un de
%-
5
V
rt
6.0
g
cos(x) sin(x)
DII
<6
b
y
+ cos(x)
up
h
&
7
O
C
n
★
8
j
¡
9
k
O
alt
р
Transcribed Image Text:alt 9 Verify the identity. esc Z JABL 2 a sin(x) + cos(x) sec(x) + csc(x) Z sin(x) + cos(x) sec(x) + csc(x) W S X # 3 = e = sin(x) cos(x) d sin(x) + cos(x) 1 1 cos(x) sin(x) = (sin(x) + cos(x)) с sin(x) + cos(x) sin(x) + cos(x) = cos(x) sin(x) + с $ 4 r F un de %- 5 V rt 6.0 g cos(x) sin(x) DII <6 b y + cos(x) up h & 7 O C n ★ 8 j ¡ 9 k O alt р
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning