Consider the following. cos(x + y) cos(x - y) = cos(x) - sin²(y) Prove the identity. - sin(x) sin(y)] cos(x - y) = [cos(x) cos(y) - sin(x) sin(y)] [cos(x) cos(y) + cos(x + y) cos(x - y) = = cos²(x) [1 - = = cos²(x). = cos² (x) - cos²(x) - sin²(y) cos²(x) - sin²(y) -sin²(x) [ + cos(x) cos(y) sin(x) sin(y) - cos(x) cos(y) sin(x) sin(y) - sin²(x) sin²(y) - sin²(x) sin²(y) . sin²(y) - sin²(x) sin²(y) | + sincey 11

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
Consider the following.
cos(x + y) cos(x - y) = cos²(x) - sin²(y)
Prove the identity.
- sin(x) sin(y)] cos(x - y)
= [cos(x) cos(x) = sin(x) sin(y)][cos(x) cos(y) +
cos(x + y) cos(x - y) =
= cos²(x).
= cos²(x) [1
=
=
=
cos² (x) -
cos²(x) - sin²(y)
cos²(x) = sin²(y) [
+ cos(x) cos(y) sin(x) sin(y) - cos(x) cos(y) sin(x) sin(y) - sin²(x) sin²(y)
-sin²(x) sin²(y)
sin²(y) - sin²(x) sin²(y)
+
+ sin²(x)]
[]
Transcribed Image Text:Consider the following. cos(x + y) cos(x - y) = cos²(x) - sin²(y) Prove the identity. - sin(x) sin(y)] cos(x - y) = [cos(x) cos(x) = sin(x) sin(y)][cos(x) cos(y) + cos(x + y) cos(x - y) = = cos²(x). = cos²(x) [1 = = = cos² (x) - cos²(x) - sin²(y) cos²(x) = sin²(y) [ + cos(x) cos(y) sin(x) sin(y) - cos(x) cos(y) sin(x) sin(y) - sin²(x) sin²(y) -sin²(x) sin²(y) sin²(y) - sin²(x) sin²(y) + + sin²(x)] []
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning