Utt uxx; 00 u(0, t) = u(1, t) = 0; u(x, 0) = 0;u,(x,0) = 1 u(x.t) = 2(1-cosna) sin(nax) sin(nat) a. u(x,t) - f0).sin(nx)dx.sin(nx)sinnx b. u(x, t) - C. 2(-1)" u(x, t) sin(nnx).sin(nt) %3D d.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Utt=uxx; 0<x<1;t>0
u(0, t) = u(1, t) = 0;
u(x, 0) = 0;u,(x,0) = 1
%3D
u(x.t) =
2(1 cosna)
sin(nax) sin(nat)
a.
u(x,t)-
f0).sin(nx)dx.sin(nx)sinnx
u(x,t)
Sx).cosnxdx.sin(nx)e
C.
Σ
2(-1)
u(x, t)
sin(nnx).sin(nat)
d.
Transcribed Image Text:Utt=uxx; 0<x<1;t>0 u(0, t) = u(1, t) = 0; u(x, 0) = 0;u,(x,0) = 1 %3D u(x.t) = 2(1 cosna) sin(nax) sin(nat) a. u(x,t)- f0).sin(nx)dx.sin(nx)sinnx u(x,t) Sx).cosnxdx.sin(nx)e C. Σ 2(-1) u(x, t) sin(nnx).sin(nat) d.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Triple Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,