Using the table given below, determine the lower- and upper-tail critical values for the Wilcoxon rank sum test statistic T, in each of the following two-tail tests. a. a = 0.10, n, = 8, nz = 8 b. a = 0.05, n, = 8, ng = 8 c. a = 0.01, n, =8, n2 = 8 d. Given your results in (a) to (c), what do you conclude regarding the width of the region of non-rejection as the selected level of significance a gets smaller? E Click the icon to view the table of critical values for the Wilcoxon rank sum test. Critical values for the wilcox a. The lower-tail critical value is O and the upper-tail critical value isO (Type whole numbers.) b. The lower-tail critical value is D and the upper-tail critical value is Lower and upper critical (Type whole numbers.) values T, of Wikcoxon rank sum test c. The lower-tail critical value is and the upper-tail critical value is. (Type whole numbers.) One tail Two tail

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Using the table given​ below, determine the​ lower- and​ upper-tail critical values for the Wilcoxon rank sum test statistic
T1
in each of the following​ two-tail tests.
 
a.
α=​0.10,
n1=8​,
n2=8
b.
α=​0.05,
n1=8​,
n2=8
c.
α=​0.01,
n1=8​,
n2=8
d. Given your results in​ (a) to​ (c), what do you conclude regarding the width of the region of​ non-rejection as the selected level of significance
α
gets​ smaller?
 
LOADING...
Click the icon to view the table of critical values for the Wilcoxon rank sum test.
 
 
 
a. The​ lower-tail critical value is
enter your response here
and the​ upper-tail critical value is
enter your response here.
​(Type whole​ numbers.)
b. The​ lower-tail critical value is
enter your response here
and the​ upper-tail critical value is
enter your response here.
​(Type whole​ numbers.)
c. The​ lower-tail critical value is
enter your response here
and the​ upper-tail critical value is
enter your response here.
​(Type whole​ numbers.)
d. The width of the region of​ non-rejection
 
 
as the selected level of significance
α
gets smaller.
0.05
23,47
31,59
29,61
8
0.10
15,37
41,71
51,85
0.025
0.05
14,38
21,49
38,74
49,87
0.01
0.02
12,40
19,51
27,63
35,77
45,91
0.005
0.01
11,41
17,53
25,65
34,78
43,93
43,76
54,90
51,93
0.05
0.10
16,40
24,51
33,63
66,105
0.025
0.05
14,42
22,53
31,65
40,79
62,109
0.01
0.02
13,43
20,55
28,68
37,82
47,97
59,112
0.005
0.01
11,45
18,57
26,70
35,84
45,99
56,115
10
0.05
0.10
17,43
26,54
35,67
45,81
56,96
69,111
82,128
0.025
0.05
15,45
23,57
32,70
42,84
53,99
65,115
78,132
0.01
0.02
13,47
21,59
29,73
39,87
49,103
61,119
74,136
0.005
0.01
12,48
19,61
27,75
37,89
47,105
58,122
71,139
One tail
Two tail
4
б
7
8
9.
10
Transcribed Image Text:0.05 23,47 31,59 29,61 8 0.10 15,37 41,71 51,85 0.025 0.05 14,38 21,49 38,74 49,87 0.01 0.02 12,40 19,51 27,63 35,77 45,91 0.005 0.01 11,41 17,53 25,65 34,78 43,93 43,76 54,90 51,93 0.05 0.10 16,40 24,51 33,63 66,105 0.025 0.05 14,42 22,53 31,65 40,79 62,109 0.01 0.02 13,43 20,55 28,68 37,82 47,97 59,112 0.005 0.01 11,45 18,57 26,70 35,84 45,99 56,115 10 0.05 0.10 17,43 26,54 35,67 45,81 56,96 69,111 82,128 0.025 0.05 15,45 23,57 32,70 42,84 53,99 65,115 78,132 0.01 0.02 13,47 21,59 29,73 39,87 49,103 61,119 74,136 0.005 0.01 12,48 19,61 27,75 37,89 47,105 58,122 71,139 One tail Two tail 4 б 7 8 9. 10
Using the table given below, determine the lower- and upper-tail critical values for the Wilcoxon rank sum test statistic T, in each of the following two-tail tests.
a. a = 0.10, n, = 8, n2 = 8
b. a = 0.05, n, = 8, n2 = 8
c. a = 0.01, n, = 8, n2 = 8
d. Given your results in (a) to (c), what do you conclude regarding the width of the region of non-rejection as the selected level of significance a gets smaller?
E Click the icon to view the table of critical values for the Wilcoxon rank sum test.
- X
Critical values for the wilcoxon rank sum test
a. The lower-tail critical value is
and the upper-tail critical value is
(Type whole numbers.)
and the upper-tail critical value is
Lower and upper critical
values T, of Wilcoxon rank
b. The lower-tail critical value is
(Type whole numbers.)
sum test
c. The lower-tail critical value is and the upper-tail critical value is
(Type whole numbers.)
n,
One tail Two tail
4
6
7
8
9
10
d. The width of the region of non-rejection
V as the selected level of significance a gets smaller.
4
0.05
0.10
11,25
0.025
0.05
10,26
0.01
0.02
0.005
0.01
stays the same
0.05
0.10
12,28
19,36
0.025
0.05
11,29
17,38
becomes larger
0.01
0.02
10,30
16,39
0.005
0.01
15,40
becomes smaller
6
0.05
0.10
13,31
20,40
28,50
0.025
0.05
12,32
18,42
26,52
0.01
0.02
11,33
17,43
24,54
0.005
0.01
10,34
16,44
23,55
7
0.05
0.10
14,34
21,44
29,55
39,66
0.025
0.05
13,35
20,45
27,57
36,69
0.01
0.02
11,37
18,47
25,59
34,71
0.005
0.01
10,38
16,49
24,60
32,73
8
0.05
0.10
15,37
23,47
31,59
41,71
51,85
0.025
0.05
14,38
21,49
29,61
38,74
49,87
0.01
0.02
12,40
19,51
27,63
35,77
45,91
Transcribed Image Text:Using the table given below, determine the lower- and upper-tail critical values for the Wilcoxon rank sum test statistic T, in each of the following two-tail tests. a. a = 0.10, n, = 8, n2 = 8 b. a = 0.05, n, = 8, n2 = 8 c. a = 0.01, n, = 8, n2 = 8 d. Given your results in (a) to (c), what do you conclude regarding the width of the region of non-rejection as the selected level of significance a gets smaller? E Click the icon to view the table of critical values for the Wilcoxon rank sum test. - X Critical values for the wilcoxon rank sum test a. The lower-tail critical value is and the upper-tail critical value is (Type whole numbers.) and the upper-tail critical value is Lower and upper critical values T, of Wilcoxon rank b. The lower-tail critical value is (Type whole numbers.) sum test c. The lower-tail critical value is and the upper-tail critical value is (Type whole numbers.) n, One tail Two tail 4 6 7 8 9 10 d. The width of the region of non-rejection V as the selected level of significance a gets smaller. 4 0.05 0.10 11,25 0.025 0.05 10,26 0.01 0.02 0.005 0.01 stays the same 0.05 0.10 12,28 19,36 0.025 0.05 11,29 17,38 becomes larger 0.01 0.02 10,30 16,39 0.005 0.01 15,40 becomes smaller 6 0.05 0.10 13,31 20,40 28,50 0.025 0.05 12,32 18,42 26,52 0.01 0.02 11,33 17,43 24,54 0.005 0.01 10,34 16,44 23,55 7 0.05 0.10 14,34 21,44 29,55 39,66 0.025 0.05 13,35 20,45 27,57 36,69 0.01 0.02 11,37 18,47 25,59 34,71 0.005 0.01 10,38 16,49 24,60 32,73 8 0.05 0.10 15,37 23,47 31,59 41,71 51,85 0.025 0.05 14,38 21,49 29,61 38,74 49,87 0.01 0.02 12,40 19,51 27,63 35,77 45,91
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman