Using the equations 2 CHe (1) + 15 O2 (g) → 12 CO2 (g) + 6 H20 (g)AH° = -6271 kJ/mol 2 H2 (g) + O2 (g) → 2 H¿O (g) AH° = -483.6 kJ/mol C (s) + O2 (g) → CO2 (g) AH° = -393.5 kJ/mol Determine the enthalpy for the reaction 6 C (s) + 3 H2 (g) → CóHe (1). kJ/mol
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
Using the equations determine the enthalpy for the reaction
![**Question 6 of 6**
**Using the equations:**
1. \(2 \, \text{C}_6\text{H}_6 \, (\text{l}) + 15 \, \text{O}_2 \, (\text{g}) \rightarrow 12 \, \text{CO}_2 \, (\text{g}) + 6 \, \text{H}_2\text{O} \, (\text{g}) \quad \Delta H^\circ = -6271 \, \text{kJ/mol}\)
2. \(2 \, \text{H}_2 \, (\text{g}) + \text{O}_2 \, (\text{g}) \rightarrow 2 \, \text{H}_2\text{O} \, (\text{g}) \quad \Delta H^\circ = -483.6 \, \text{kJ/mol}\)
3. \(\text{C} \, (\text{s}) + \text{O}_2 \, (\text{g}) \rightarrow \text{CO}_2 \, (\text{g}) \quad \Delta H^\circ = -393.5 \, \text{kJ/mol}\)
**Determine the enthalpy for the reaction:**
\(6 \, \text{C} \, (\text{s}) + 3 \, \text{H}_2 \, (\text{g}) \rightarrow \text{C}_6\text{H}_6 \, (\text{l}).\)
---
**Explanation:**
- The screen displays a calculator interface that includes a keypad for numerical input, featuring numbers 0-9, a decimal point, a +/- toggle, and buttons for clearing input or multiplying by ten. This is used for calculating the enthalpy change for the reaction.
- The text above the calculator presents a thermochemistry problem that involves using given chemical equations and their respective standard enthalpy changes (\(\Delta H^\circ\)) to calculate the enthalpy change of formation for benzene (\(\text{C}_6\text{H}_6\)) from its elements in their standard states. This involves applying Hess's law.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F743e1204-284e-4787-9cb1-b6fdc93e0afd%2Fee588aa1-47fd-4c42-bf29-8b9ac367614c%2Fa4mszv2y_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)