Using Fourier Transform of derivatives and Table of Fourier Transform in the Appendix A, solve the following differential equation. y' + 9y = 8(x) (-∞ < x < ∞) 1 y(0) = 0,y(∞) bounded. [Hint: F{8(x)} %3D V2n

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Using Fourier Transform of derivatives and Table of Fourier Transform in the Appendix A,
solve the following differential equation.
y' + 9y = 8(x)
(-00 < x < ∞)
y(0) = 0, y(∞) bounded. [Hint: F{8(x)} =
V2n
Transcribed Image Text:Using Fourier Transform of derivatives and Table of Fourier Transform in the Appendix A, solve the following differential equation. y' + 9y = 8(x) (-00 < x < ∞) y(0) = 0, y(∞) bounded. [Hint: F{8(x)} = V2n
f(x)
f(w) = F(f)
%3D
SI if-b<x<b
1
2 sin bw
lo otherwise
S! ifb<x<c
lo otherwise
-iew
-alad
(a > 0)
2 a
if 0 <x<b
-1 + 2ebe – e-20w
2x – b ifb<x< 2b
otherwise
if x >0
{
1
(a > 0)
otherwise
V27\a + iw)
se ifb<x<c
lo aherwise
pla-nele – da-iub
V27(a – iw)
7| [e if -b<x<b
7
lo otherwise
2 sin b(w – a)
w -
8 if b<x<c
otherwise
gbla-w - eisla-w)
27
a - w
9
(a > 0)
Vza
sin ax
10
(a > 0)
if lwl <a; Oif |삐 >a
2.
3.
Transcribed Image Text:f(x) f(w) = F(f) %3D SI if-b<x<b 1 2 sin bw lo otherwise S! ifb<x<c lo otherwise -iew -alad (a > 0) 2 a if 0 <x<b -1 + 2ebe – e-20w 2x – b ifb<x< 2b otherwise if x >0 { 1 (a > 0) otherwise V27\a + iw) se ifb<x<c lo aherwise pla-nele – da-iub V27(a – iw) 7| [e if -b<x<b 7 lo otherwise 2 sin b(w – a) w - 8 if b<x<c otherwise gbla-w - eisla-w) 27 a - w 9 (a > 0) Vza sin ax 10 (a > 0) if lwl <a; Oif |삐 >a 2. 3.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,