A polyhedron (3-polytope) is called regular if all its facets are congruent regular polygons and all the angles at the vertices are equal. Supply the details in the following proof that there are only five regular polyhedra. a. Suppose that a regular polyhedron has r facets, each of which is a k-sided regular polygon, and that s edges meet at each vertex. Letting v and e denote the numbers of vertices and edges in the polyhedron, explain why kr = 2e and sv = 2e. b. Use Euler's formula to show that 1 - c. Find all the integral solutions of the equation in part (b) that satisfy the geometric constraints of the problem. (How small can k and s be?) For your information, the five regular polyhedra are the tetrahedron (4, 6, 4), the cube (8, 12, 6), the octahedron (6, 12, 8), the dodecahedron (20, 30, 12), and the icosahedron (12, 30, 20). (The numbers in parentheses indicate the numbers of vertices, edges, and faces, respectively.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
A polyhedron (3-polytope) is called regular if all its facets are congruent regular polygons and all the angles at the vertices
are equal. Supply the details in the following proof that there are only five regular polyhedra. a. Suppose that a regular
polyhedron has r facets, each of which is a k-sided regular polygon, and that s edges meet at each vertex. Letting v and e
denote the numbers of vertices and edges in the polyhedron, explain why
kr = 2e and sv = 2e.
b. Use Euler's formula to show that
1
-
c. Find all the integral solutions of the equation in part (b) that satisfy the geometric constraints of the problem. (How small
can k and s be?)
For your information, the five regular polyhedra are the tetrahedron (4, 6, 4), the cube (8, 12, 6), the octahedron (6, 12, 8),
the dodecahedron (20, 30, 12), and the icosahedron (12, 30, 20). (The numbers in parentheses indicate the numbers of
vertices, edges, and faces, respectively.)
Transcribed Image Text:A polyhedron (3-polytope) is called regular if all its facets are congruent regular polygons and all the angles at the vertices are equal. Supply the details in the following proof that there are only five regular polyhedra. a. Suppose that a regular polyhedron has r facets, each of which is a k-sided regular polygon, and that s edges meet at each vertex. Letting v and e denote the numbers of vertices and edges in the polyhedron, explain why kr = 2e and sv = 2e. b. Use Euler's formula to show that 1 - c. Find all the integral solutions of the equation in part (b) that satisfy the geometric constraints of the problem. (How small can k and s be?) For your information, the five regular polyhedra are the tetrahedron (4, 6, 4), the cube (8, 12, 6), the octahedron (6, 12, 8), the dodecahedron (20, 30, 12), and the icosahedron (12, 30, 20). (The numbers in parentheses indicate the numbers of vertices, edges, and faces, respectively.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,