Use the sample data and confidence level given below to complete parts (a) through (d). A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 923 and x= 580 who said "yes." Use a 95% confidence level. E Click the icon to view a table of z scores. a) Find the best point estimate of the population proportion p. 0.628 (Round to three decimal places as needed.) b) Identify the value of the margin of error E. E = 0.031 (Round to three decimal places es needed.) c) Construct the confidence interval. (Round to three decimal places as needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question
**Using Sample Data and Confidence Levels to Estimate Population Proportions**

A research institute conducted a poll to determine if respondents felt vulnerable to identity theft. The sample consisted of 923 individuals, of which 580 responded "yes." A 95% confidence level was used for this analysis. 

### Calculations

**a) Best Point Estimate of the Population Proportion (p)**

The best point estimate for the population proportion is calculated as:
\[ p = \frac{x}{n} = \frac{580}{923} = 0.628 \]

*(Value rounded to three decimal places as needed.)*

**b) Margin of Error (E)**

The margin of error is the range within which we can expect the true population proportion to fall. It is given as:
\[ E = 0.031 \]

*(Value rounded to three decimal places as needed.)*

**c) Construct the Confidence Interval**

The confidence interval provides a range of values, calculated from the sample data, within which the true population proportion is expected to fall. Using the point estimate and margin of error, the confidence interval is constructed as:
\[ (\text{lower bound}, \text{upper bound}) = (p - E, p + E) \]

This simplifies to:
\[ (0.628 - 0.031, 0.628 + 0.031) \]
\[ (0.597, 0.659) \]

*(Values rounded to three decimal places as needed.)*

**Conclusion**

The estimated population proportion of individuals feeling vulnerable to identity theft is approximately 0.628, with a 95% confidence interval ranging from 0.597 to 0.659. The computed margin of error is 0.031.
Transcribed Image Text:**Using Sample Data and Confidence Levels to Estimate Population Proportions** A research institute conducted a poll to determine if respondents felt vulnerable to identity theft. The sample consisted of 923 individuals, of which 580 responded "yes." A 95% confidence level was used for this analysis. ### Calculations **a) Best Point Estimate of the Population Proportion (p)** The best point estimate for the population proportion is calculated as: \[ p = \frac{x}{n} = \frac{580}{923} = 0.628 \] *(Value rounded to three decimal places as needed.)* **b) Margin of Error (E)** The margin of error is the range within which we can expect the true population proportion to fall. It is given as: \[ E = 0.031 \] *(Value rounded to three decimal places as needed.)* **c) Construct the Confidence Interval** The confidence interval provides a range of values, calculated from the sample data, within which the true population proportion is expected to fall. Using the point estimate and margin of error, the confidence interval is constructed as: \[ (\text{lower bound}, \text{upper bound}) = (p - E, p + E) \] This simplifies to: \[ (0.628 - 0.031, 0.628 + 0.031) \] \[ (0.597, 0.659) \] *(Values rounded to three decimal places as needed.)* **Conclusion** The estimated population proportion of individuals feeling vulnerable to identity theft is approximately 0.628, with a 95% confidence interval ranging from 0.597 to 0.659. The computed margin of error is 0.031.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Hypothesis Tests and Confidence Intervals for Proportions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman