Use the alternative conduction analysis of Section 3.2 to derive an expression relating the radial heat rate, q,, to the wall temperatures Ts,1 and Ts,2, for the hollow cylinder show in the figure below. Cold fluid Too,2, h₂ Ts,1 Hot fluid Too,1, h₁1 Ts,1 Ts2 r1 12 Ts.2 Use your expression to calculate the heat transfer rate, in W, associated with a L = 1.25 m long cylinder of inner and outer radii of r₁ = 50 mm and r₂ = 75 mm, respectively. The thermal conductivity of the cylindrical wall is k 2.5 W/m-K, and the inner and outer surface temperatures are Ts,1 100°C and Ts2 = 67°C, respectively. = 9r = i W

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter2: Steady Heat Conduction
Section: Chapter Questions
Problem 2.63P
icon
Related questions
Question
Use the alternative conduction analysis of Section 3.2 to derive an expression relating the radial heat rate, q,,
to the wall temperatures Ts,1 and Ts,2, for the hollow cylinder show in the figure below.
Cold fluid
Too,2, h₂
Ts,1
Hot fluid
Too,1, h₁1
Ts,1
Ts2
r1
12
Ts.2
Use your expression to calculate the heat transfer rate, in W, associated with a L = 1.25 m long cylinder of
inner and outer radii of r₁ = 50 mm and r₂ = 75 mm, respectively. The thermal conductivity of the cylindrical
wall is k 2.5 W/m-K, and the inner and outer surface temperatures are Ts,1 100°C and Ts2 = 67°C,
respectively.
=
9r =
i
W
Transcribed Image Text:Use the alternative conduction analysis of Section 3.2 to derive an expression relating the radial heat rate, q,, to the wall temperatures Ts,1 and Ts,2, for the hollow cylinder show in the figure below. Cold fluid Too,2, h₂ Ts,1 Hot fluid Too,1, h₁1 Ts,1 Ts2 r1 12 Ts.2 Use your expression to calculate the heat transfer rate, in W, associated with a L = 1.25 m long cylinder of inner and outer radii of r₁ = 50 mm and r₂ = 75 mm, respectively. The thermal conductivity of the cylindrical wall is k 2.5 W/m-K, and the inner and outer surface temperatures are Ts,1 100°C and Ts2 = 67°C, respectively. = 9r = i W
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning