Use strain energy increments in the OWL Table Reference (see References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of the compound below. Specify substituent positions (axial or equatorial) in the more stable chair. Estimate the percent of the more stable chair at equilibrium at 25°C.   (To determine the percent of the more stable chair at equilibrium, first calculate Keq, and then use this value to find the percentage.)

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
Use strain energy increments in the OWL Table Reference (see References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of the compound below.
Specify substituent positions (axial or equatorial) in the more stable chair.
Estimate the percent of the more stable chair at equilibrium at 25°C.
 
(To determine the percent of the more stable chair at equilibrium, first calculate Keq, and then use this value to find the percentage.)
Use the References to access important values if needed for this question.
a. Use strain energy increments in the OWL Table Reference (see References button, Strain Energy Increments) to calculate the energy difference
between the two chair conformations of the compound below.
b. Specify substituent positions (axial or equatorial) in the more stable chair.
c. Estimate the percent of the more stable chair at equilibrium at 25°C.
(To determine the percent of the more stable chair at equilibrium, first calculate Keq, and then use this value to find the percentage.)
CH3
Answers:
a. The energy difference is
b. In the more stable chair:
The vinyl(ethenyl) group is in the
position.
position.
o The methyl group is in the (
c. At 25°C the equilibrium percent of the more stable chair conformation is approximately
Submit Answer
Retry Entire Group 8 more group attempts remaining
kJ/mol.
Transcribed Image Text:Use the References to access important values if needed for this question. a. Use strain energy increments in the OWL Table Reference (see References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of the compound below. b. Specify substituent positions (axial or equatorial) in the more stable chair. c. Estimate the percent of the more stable chair at equilibrium at 25°C. (To determine the percent of the more stable chair at equilibrium, first calculate Keq, and then use this value to find the percentage.) CH3 Answers: a. The energy difference is b. In the more stable chair: The vinyl(ethenyl) group is in the position. position. o The methyl group is in the ( c. At 25°C the equilibrium percent of the more stable chair conformation is approximately Submit Answer Retry Entire Group 8 more group attempts remaining kJ/mol.
Axial Strain Energies for Monosubstituted Cyclohexanesa, D
This table gives the sum of the values for the 1,3 diaxial interactions of the substituent with two hydrogen atoms.
Substituent(solvent)
kJ/mol
kcal/mol
-CH3
7.3
1.7
-CH₂CH3
7.5
1.8
-CH(CH3)2
9.2
2.2
-C(CH3)3
20
4.8
phenyl
11.7
2.8
cyclohexyl
9.2
2.2
-CH=CH₂
6.2
1.5
-CCH, ethynyl
2.1
0.5
-CHO
3.0
0.7
-COCH 3
5.1
1.2
-CO₂H
5.9
1.4
-CO,CH,CH3
5.0
1.2
-Cl
2.5
0.6
-Br
2.5
0.6
-CN, cyano
0.8
0.2
-OH (cyclohexane)
2.5
0.6
-OH (isopropanol)
4.0
1.0
-OCH3
2.5
0.6
-NH₂ (toluene)
5.2
1.2
-NH2 (CH3OCH₂CH₂OH/H₂O)
7.1
1.7
Transcribed Image Text:Axial Strain Energies for Monosubstituted Cyclohexanesa, D This table gives the sum of the values for the 1,3 diaxial interactions of the substituent with two hydrogen atoms. Substituent(solvent) kJ/mol kcal/mol -CH3 7.3 1.7 -CH₂CH3 7.5 1.8 -CH(CH3)2 9.2 2.2 -C(CH3)3 20 4.8 phenyl 11.7 2.8 cyclohexyl 9.2 2.2 -CH=CH₂ 6.2 1.5 -CCH, ethynyl 2.1 0.5 -CHO 3.0 0.7 -COCH 3 5.1 1.2 -CO₂H 5.9 1.4 -CO,CH,CH3 5.0 1.2 -Cl 2.5 0.6 -Br 2.5 0.6 -CN, cyano 0.8 0.2 -OH (cyclohexane) 2.5 0.6 -OH (isopropanol) 4.0 1.0 -OCH3 2.5 0.6 -NH₂ (toluene) 5.2 1.2 -NH2 (CH3OCH₂CH₂OH/H₂O) 7.1 1.7
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Alkanes and Cycloalkanes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY