Use Newton Raphson Example 1. f(x)= x³ - 20 f'(x) = 3x² i 0 1 2 3 4 5 6 X 3 f(x) 33-20 x³-200 start with initial guess = 3 f'(x) 3* (3²) Xi+1 = Xi - x₁ = 3- f(xi) f'(xi) 33 - 20 3* (3²) = 2.741 12.741-31 2.741 error *100 = 9.45%

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Use Newton Raphson Example 1**

The objective is to solve the equation \( x^3 - 20 = 0 \) starting with an initial guess of 3.

### Functions:

- \( f(x) = x^3 - 20 \)
- \( f'(x) = 3x^2 \)

### Iteration Process:

\[
x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}
\]

### Table:

| i | X   | \( f(x) \)     | \( f'(x) \)     | \( x_{i+1} \) Calculation                                     | Error                                                   |
|---|-----|--------------|--------------|-------------------------------------------------------------|---------------------------------------------------------|
| 0 | 3   | \( 3^3 - 20 \)| \( 3 \times (3^2) \) | \( x_1 = 3 - \frac{3^3 - 20}{3 \times (3^2)} = 2.741 \)  | \(\left| \frac{2.741 - 3}{2.741} \right| \times 100 = 9.45\%\) |
| 1 |     |              |              |                                                             |                                                         |
| 2 |     |              |              |                                                             |                                                         |
| 3 |     |              |              |                                                             |                                                         |
| 4 |     |              |              |                                                             |                                                         |
| 5 |     |              |              |                                                             |                                                         |
| 6 |     |              |              |                                                             |                                                         |

- **Iteration 0:**
  - Initial guess: \( x_0 = 3 \)
  - Calculation of \( f(x_0) \) and \( f'(x_0) \)
  - Next approximation: \( x_1 = 2.741 \)
  - Error calculation: 9.45%

This example demonstrates the first iteration of the Newton-Raphson method to find the root of the equation. Further iterations would involve recalculating using the updated value of \( x \).
Transcribed Image Text:**Use Newton Raphson Example 1** The objective is to solve the equation \( x^3 - 20 = 0 \) starting with an initial guess of 3. ### Functions: - \( f(x) = x^3 - 20 \) - \( f'(x) = 3x^2 \) ### Iteration Process: \[ x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \] ### Table: | i | X | \( f(x) \) | \( f'(x) \) | \( x_{i+1} \) Calculation | Error | |---|-----|--------------|--------------|-------------------------------------------------------------|---------------------------------------------------------| | 0 | 3 | \( 3^3 - 20 \)| \( 3 \times (3^2) \) | \( x_1 = 3 - \frac{3^3 - 20}{3 \times (3^2)} = 2.741 \) | \(\left| \frac{2.741 - 3}{2.741} \right| \times 100 = 9.45\%\) | | 1 | | | | | | | 2 | | | | | | | 3 | | | | | | | 4 | | | | | | | 5 | | | | | | | 6 | | | | | | - **Iteration 0:** - Initial guess: \( x_0 = 3 \) - Calculation of \( f(x_0) \) and \( f'(x_0) \) - Next approximation: \( x_1 = 2.741 \) - Error calculation: 9.45% This example demonstrates the first iteration of the Newton-Raphson method to find the root of the equation. Further iterations would involve recalculating using the updated value of \( x \).
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,