Suppose f(x), f'(x), g(x), and g'(x) have the values shown: -6 I -7 f(x) -9 f'(x) -1 g(x) 10 g'(x) -4 Find the following. (fg)'(-7)= ()'(-) = 8 2 -9 10 -5 -8 -6 7 4 -4 -6 8 -6 10 -3 8 -4 -6 2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Table Values for Functions and Their Derivatives**

Suppose \( f(x) \), \( f'(x) \), \( g(x) \), and \( g'(x) \) have the values shown in the table:

| \( x \)  | \(-7\) | \(-6\) | \(-5\) | \(-4\) | \(-3\) |
|----------|--------|--------|--------|--------|--------|
| \( f(x) \)  | \(-9\) | \( 8 \)  | \(-8\) | \(-6\) | \(8\)  |
| \( f'(x) \) | \(-1\) | \(2\)  | \(6\)  | \(8\)  | \(4\)  |
| \( g(x) \)  | \(10\) | \(-9\) | \(7\)  | \(-6\) | \(-6\) |
| \( g'(x) \) | \(4\)  | \(10\) | \(4\)  | \(10\) | \(2\)  |

**Find the following:**

1. \( (fg)'(-7) \)
2. \( \left(\frac{f}{g}\right)'(-7) \)

### Explanation of Functions and Derivatives

- \( f(x) \) and \( g(x) \) represent the values of two functions at specific points.
- \( f'(x) \) and \( g'(x) \) represent the values of the derivatives of these functions at the same points.

### Calculations:

1. **Finding \( (fg)'(-7) \)**

Using the Product Rule for derivatives:

\[ (fg)'(x) = f'(x)g(x) + g'(x)f(x) \]

Substitute \( x = -7 \):

\[ (fg)'(-7) = f'(-7)g(-7) + g'(-7)f(-7) \]
\[ (fg)'(-7) = (-1)(10) + (4)(-9) \]
\[ (fg)'(-7) = -10 - 36 \]
\[ (fg)'(-7) = -46 \]

2. **Finding \( \left( \frac{f}{g
Transcribed Image Text:**Table Values for Functions and Their Derivatives** Suppose \( f(x) \), \( f'(x) \), \( g(x) \), and \( g'(x) \) have the values shown in the table: | \( x \) | \(-7\) | \(-6\) | \(-5\) | \(-4\) | \(-3\) | |----------|--------|--------|--------|--------|--------| | \( f(x) \) | \(-9\) | \( 8 \) | \(-8\) | \(-6\) | \(8\) | | \( f'(x) \) | \(-1\) | \(2\) | \(6\) | \(8\) | \(4\) | | \( g(x) \) | \(10\) | \(-9\) | \(7\) | \(-6\) | \(-6\) | | \( g'(x) \) | \(4\) | \(10\) | \(4\) | \(10\) | \(2\) | **Find the following:** 1. \( (fg)'(-7) \) 2. \( \left(\frac{f}{g}\right)'(-7) \) ### Explanation of Functions and Derivatives - \( f(x) \) and \( g(x) \) represent the values of two functions at specific points. - \( f'(x) \) and \( g'(x) \) represent the values of the derivatives of these functions at the same points. ### Calculations: 1. **Finding \( (fg)'(-7) \)** Using the Product Rule for derivatives: \[ (fg)'(x) = f'(x)g(x) + g'(x)f(x) \] Substitute \( x = -7 \): \[ (fg)'(-7) = f'(-7)g(-7) + g'(-7)f(-7) \] \[ (fg)'(-7) = (-1)(10) + (4)(-9) \] \[ (fg)'(-7) = -10 - 36 \] \[ (fg)'(-7) = -46 \] 2. **Finding \( \left( \frac{f}{g
Expert Solution
steps

Step by step

Solved in 4 steps with 8 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning