Two water bottles A and B have the same mass (m) and very similar size and shape but are made from different materials (MA and MB respectively) at room temperature. The same amount of boiling water is put into A and B, and then both bottles are closed with screw caps. After 5 minutes, the temperature of water in bottle A is higher than the water in bottle B. We may then conclude that (with your explanation): (a) MA has higher specific heat and the water in A has lower internal energy. (b) MA has lower specific heat and the water in B has higher internal energy. (c) MB has lower specific heat but the water in A and B have the same internal energy. (d) MB has higher specific heat but the water in A has higher internal energy. (e) MB and MB have the same specific heat and the water in A and B have the same internal energy
Two water bottles A and B have the same mass (m) and very similar size and shape but are made from different materials (MA and MB respectively) at room temperature. The same amount of boiling water is put into A and B, and then both bottles are closed with screw caps. After 5 minutes, the temperature of water in bottle A is higher than the water in bottle B. We may then conclude that (with your explanation):
(a) MA has higher specific heat and the water in A has lower internal energy.
(b) MA has lower specific heat and the water in B has higher internal energy.
(c) MB has lower specific heat but the water in A and B have the same internal energy.
(d) MB has higher specific heat but the water in A has higher internal energy.
(e) MB and MB have the same specific heat and the water in A and B have the same internal energy.
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)