Two thin rods of length L are rotating with the same angular speed w (in rad/s) about axes that pass perpendicularly th end. Rod A is massless but has a particle of mass 0.70 kg attached to its free end. Rod B has a'mass of 0.70 kg, which is uniformly along its length. The length of each rod is 0.72 m, and the angular speed is 4.9 rad/s. Find the kinetic energie- its attached particle and of rod B. (a) KEA = i

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
**Rotational Kinetic Energy of Two Thin Rods**

*Problem Statement:*
Two thin rods of length \( L \) are rotating with the same angular speed \( \omega \) (in rad/s) about axes that pass perpendicularly through one end. Rod A is massless but has a particle of mass 0.70 kg attached to its free end. Rod B has a mass of 0.70 kg, which is distributed uniformly along its length. The length of each rod is 0.72 m, and the angular speed is 4.9 rad/s. Find the kinetic energies of rod A with its attached particle and of rod B.

1. (a) \( KE_A \) = 
2. (b) \( KE_B \) = 

### Explanation:

#### Kinetic Energy Calculation for Rod A:
Rod A is considered massless, but it has a particle of mass \( m \) attached to its free end. The kinetic energy \( KE_A \) can be calculated using the formula for rotational kinetic energy for a point mass:
\[ KE = \frac{1}{2} m L^2 \omega^2 \]

Given that:
- \( m = 0.70 \) kg
- \( L = 0.72 \) m
- \( \omega = 4.9 \) rad/s

\[ KE_A = \frac{1}{2} \times 0.70 \, \text{kg} \times (0.72 \, \text{m})^2 \times (4.9 \, \text{rad/s})^2 \]

#### Kinetic Energy Calculation for Rod B:
Rod B has its mass uniformly distributed along its length. The kinetic energy \( KE_B \) can be calculated using the formula for rotational kinetic energy of a rod rotating about one end:
\[ KE = \frac{1}{6} m L^2 \omega^2 \]

Given that:
- \( m = 0.70 \) kg
- \( L = 0.72 \) m
- \( \omega = 4.9 \) rad/s

\[ KE_B = \frac{1}{6} \times 0.70 \, \text{kg} \times (0.72 \, \text{m})^2 \times (4.9 \, \text{rad/s})^2 \
Transcribed Image Text:**Rotational Kinetic Energy of Two Thin Rods** *Problem Statement:* Two thin rods of length \( L \) are rotating with the same angular speed \( \omega \) (in rad/s) about axes that pass perpendicularly through one end. Rod A is massless but has a particle of mass 0.70 kg attached to its free end. Rod B has a mass of 0.70 kg, which is distributed uniformly along its length. The length of each rod is 0.72 m, and the angular speed is 4.9 rad/s. Find the kinetic energies of rod A with its attached particle and of rod B. 1. (a) \( KE_A \) = 2. (b) \( KE_B \) = ### Explanation: #### Kinetic Energy Calculation for Rod A: Rod A is considered massless, but it has a particle of mass \( m \) attached to its free end. The kinetic energy \( KE_A \) can be calculated using the formula for rotational kinetic energy for a point mass: \[ KE = \frac{1}{2} m L^2 \omega^2 \] Given that: - \( m = 0.70 \) kg - \( L = 0.72 \) m - \( \omega = 4.9 \) rad/s \[ KE_A = \frac{1}{2} \times 0.70 \, \text{kg} \times (0.72 \, \text{m})^2 \times (4.9 \, \text{rad/s})^2 \] #### Kinetic Energy Calculation for Rod B: Rod B has its mass uniformly distributed along its length. The kinetic energy \( KE_B \) can be calculated using the formula for rotational kinetic energy of a rod rotating about one end: \[ KE = \frac{1}{6} m L^2 \omega^2 \] Given that: - \( m = 0.70 \) kg - \( L = 0.72 \) m - \( \omega = 4.9 \) rad/s \[ KE_B = \frac{1}{6} \times 0.70 \, \text{kg} \times (0.72 \, \text{m})^2 \times (4.9 \, \text{rad/s})^2 \
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON