Two smooth disks A and B each have a mass of 0.5 kg. Both disks are moving with the velocities shown when they collide. The coefficient of restitution is eee = 0.75. Suppose that (vA)1(vA)1va = 7 m/sm/s , (vB)1(vB)1vb = 4 m/sm/s a) Determine the magnitude of the final velocity of A just after collision b) Determine the angle between the x axis and the final velocity of A just after the collision, measured counterclockwise from the positive x axis. c) Determine the magnitude of the final velocity of B just after collision. d) Determine the angle between the x axis and the final velocity of B just after the collision, measured clockwise from the negative x axis.
Two smooth disks A and B each have a mass of 0.5 kg. Both disks are moving with the velocities shown when they collide. The coefficient of restitution is eee = 0.75. Suppose that (vA)1(vA)1va = 7 m/sm/s , (vB)1(vB)1vb = 4 m/sm/s a) Determine the magnitude of the final velocity of A just after collision b) Determine the angle between the x axis and the final velocity of A just after the collision, measured counterclockwise from the positive x axis. c) Determine the magnitude of the final velocity of B just after collision. d) Determine the angle between the x axis and the final velocity of B just after the collision, measured clockwise from the negative x axis.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Topic Video
Question
Two smooth disks A and B each have a mass of 0.5 kg. Both disks are moving with the velocities shown when they collide. The coefficient of restitution is eee = 0.75. Suppose that (vA)1(vA)1va = 7 m/sm/s , (vB)1(vB)1vb = 4 m/sm/s
a) Determine the magnitude of the final velocity of A just after collision
b) Determine the angle between the x axis and the final velocity of A just after the collision, measured counterclockwise from the positive x axis.
c) Determine the magnitude of the final velocity of B just after collision.
d) Determine the angle between the x axis and the final velocity of B just after the collision, measured clockwise from the negative x axis.
Expert Solution
Step 1
Given data:
- Mass of both disks mA=mB=0.5 kg.
- Coefficient of restitution is e=0.75.
- Initial velocity of A is (vA)1=7 m/s.
- Initial velocity of B is (vB)1=4 m/s.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON