Two projectiles are launched from two different heights, as shown in the figure. Projectile A, on the left, is launched from a 30 m building, with an initial speed of 50 m/s in a horizontal direction. Projectile B, at right, it is launched from a building 100 m from the other building and from a height of 15 m. It is also known that the Projectile B is launched at an angle of 135° with respect to the horizontal, with unknown initial velocity. Find: a) The initial velocity with which projectile B is launched. b) The time elapsed from when the projectiles are launched to when they crash into each other. 30m √(4) 100m 2-18) 15m 135°

icon
Related questions
Question
Two projectiles are launched from two different heights, as shown in the figure. Projectile A,
on the left, is launched from a 30 m building, with an initial speed of 50 m/s in a horizontal
direction. Projectile B, at right, it is launched from a building 100 m from the other building
and from a height of 15 m. It is also known that the Projectile B is launched at an angle of
135° with respect to the horizontal, with unknown initial velocity. Find:
a) The initial velocity with which projectile B is launched.
b) The time elapsed from when the projectiles are launched to when they crash into each
other.
30m
√(4)
100m
2-18)
15m
135°
Transcribed Image Text:Two projectiles are launched from two different heights, as shown in the figure. Projectile A, on the left, is launched from a 30 m building, with an initial speed of 50 m/s in a horizontal direction. Projectile B, at right, it is launched from a building 100 m from the other building and from a height of 15 m. It is also known that the Projectile B is launched at an angle of 135° with respect to the horizontal, with unknown initial velocity. Find: a) The initial velocity with which projectile B is launched. b) The time elapsed from when the projectiles are launched to when they crash into each other. 30m √(4) 100m 2-18) 15m 135°
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions