To ensure turbulent conditions and minimum mixing time during agitation with a turbine impeller, the Reynolds number must be at least 104. (a) A stirred laboratory-scale fermenter with a turbine impeller 5 cm in diameter is operated at 800 rpm. If the density of broth being stirred is close to that of water, what is the upper limit for viscosity of the suspension if adequate mixing is to be maintained? (b) The mixing system is scaled up so the tank and impeller are 15 times the diameter of the laboratory equipment. The stirrer in the large vessel is operated so that the stirrer tip speed (tip speed=nN,D.) is the same as in the laboratory apparatus. How does scale-up affect the maximum viscosity allowable for maintenance of turbulent mixing conditions?

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

please solve the question during 1 hr

To ensure turbulent conditions and minimum mixing time during agitation with a turbine impeller, the
Reynolds number must be at least 104.
(a) A stirred laboratory-scale fermenter with a turbine impeller 5 cm in diameter is operated at 800
rpm. If the density of broth being stirred is close to that of water, what is the upper limit for viscosity of
the suspension if adequate mixing is to be maintained?
(b) The mixing system is scaled up so the tank and impeller are 15 times the diameter of the laboratory
equipment. The stirrer in the large vessel is operated so that the stirrer tip speed (tip speed=nN;D:) is
the same as in the laboratory apparatus. How does scale-up affect the maximum viscosity allowable for
maintenance of turbulent mixing conditions?
Transcribed Image Text:To ensure turbulent conditions and minimum mixing time during agitation with a turbine impeller, the Reynolds number must be at least 104. (a) A stirred laboratory-scale fermenter with a turbine impeller 5 cm in diameter is operated at 800 rpm. If the density of broth being stirred is close to that of water, what is the upper limit for viscosity of the suspension if adequate mixing is to be maintained? (b) The mixing system is scaled up so the tank and impeller are 15 times the diameter of the laboratory equipment. The stirrer in the large vessel is operated so that the stirrer tip speed (tip speed=nN;D:) is the same as in the laboratory apparatus. How does scale-up affect the maximum viscosity allowable for maintenance of turbulent mixing conditions?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Knowledge Booster
Hazard analysis and design
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The