The wind chill, which is experienced on a cold, windy day, is related to increased heat transfer from exposed human skin to the surrounding atmosphere. Consider a layer of fatty tissue that is 3 mm thick and whose interior surface is maintained at a temperature of 36°C. On a calm day the convection heat transfer coefficient at the outer surface is 25 W/m2 · K, but with 30 km/h winds it reaches 65 W/m2 · K. In both cases the ambient air temperature is -15°C. (a) What is the ratio of the rate of heat loss per unit area from the skin for the calm day to that for the windy day? (b) What will be the skin outer surface temperature for the calm day? For the windy day? (c) What temperature would the air have to assume on the calm day to produce the same heat rate occurring with the air temperature at −15°C on the windy day?

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter8: Natural Convection
Section: Chapter Questions
Problem 8.60P
icon
Related questions
Question

Problem: Conduction related

 

The wind chill, which is experienced on a cold, windy day, is related to increased heat transfer from exposed human skin to the surrounding atmosphere. Consider a layer of fatty tissue that is 3 mm thick and whose interior surface is maintained at a temperature of 36°C. On a calm day the convection heat transfer coefficient at the outer surface is 25 W/m2 · K, but with 30 km/h winds it reaches 65 W/m2 · K. In both cases the ambient air temperature is -15°C.

(a) What is the ratio of the rate of heat loss per unit area from the skin for the calm day to that for the windy day?

(b) What will be the skin outer surface temperature for the calm day? For the windy day?

(c) What temperature would the air have to assume on the calm day to produce the same heat rate occurring with the air temperature at −15°C on the windy day?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning