The set S is {F}} 2 -2 5 neither an orthogonal set nor an orthonormal set. an orthogonal set. a subspace in R³. an orthonormal set.
The set S is {F}} 2 -2 5 neither an orthogonal set nor an orthonormal set. an orthogonal set. a subspace in R³. an orthonormal set.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![#### Orthogonality and Orthonormality of Vector Sets
The set \( \mathcal{S} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix} \right\} \)
is
1. \( \circle \) neither an orthogonal set nor an orthonormal set.
2. \( \circle \) an orthogonal set.
3. \( \circle \) a subspace in \( \mathbb{R}^3 \).
4. \( \circle \) an orthonormal set.
### Explanation
Given a set of vectors, we can assess their orthogonality and orthonormality by examining their dot product and magnitudes. The dot product of two vectors \( \mathbf{u} \) and \( \mathbf{v} \) yields zero if the vectors are orthogonal:
\[ \mathbf{u} \cdot \mathbf{v} = 0 \text{ implies orthogonality.} \]
An orthonormal set is a set of orthogonal vectors where each vector is also a unit vector, meaning the magnitude of each vector is 1. The magnitude of a vector \( \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \) is given by:
\[ \| \mathbf{u} \| = \sqrt{u_1^2 + u_2^2 + u_3^2} \]
To answer the question above, the dot product of the vectors \( \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} \) and \( \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix} \) needs to be calculated, along with their magnitudes, to determine if the set \( \mathcal{S} \) satisfies the conditions for orthogonality and orthonormality.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe354d500-dc10-4e3d-a060-42009e500b8b%2F20a5ff09-febc-49f2-90bb-9aa780475b8c%2Fgyngd2_processed.png&w=3840&q=75)
Transcribed Image Text:#### Orthogonality and Orthonormality of Vector Sets
The set \( \mathcal{S} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix} \right\} \)
is
1. \( \circle \) neither an orthogonal set nor an orthonormal set.
2. \( \circle \) an orthogonal set.
3. \( \circle \) a subspace in \( \mathbb{R}^3 \).
4. \( \circle \) an orthonormal set.
### Explanation
Given a set of vectors, we can assess their orthogonality and orthonormality by examining their dot product and magnitudes. The dot product of two vectors \( \mathbf{u} \) and \( \mathbf{v} \) yields zero if the vectors are orthogonal:
\[ \mathbf{u} \cdot \mathbf{v} = 0 \text{ implies orthogonality.} \]
An orthonormal set is a set of orthogonal vectors where each vector is also a unit vector, meaning the magnitude of each vector is 1. The magnitude of a vector \( \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \) is given by:
\[ \| \mathbf{u} \| = \sqrt{u_1^2 + u_2^2 + u_3^2} \]
To answer the question above, the dot product of the vectors \( \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} \) and \( \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix} \) needs to be calculated, along with their magnitudes, to determine if the set \( \mathcal{S} \) satisfies the conditions for orthogonality and orthonormality.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)