linear algebra 3.1 Q1 a, c, e

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

linear algebra 3.1 Q1 a, c, e

**1. Which of the following are subspaces? Justify your answer in each case.**

a. \(\{ \mathbf{x} \in \mathbb{R}^2 : x_1 + x_2 = 1 \}\)

b. \(\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \begin{bmatrix} a \\ b \\ a + b \end{bmatrix} \text{ for some } a, b \in \mathbb{R} \}\)

c. \(\{ \mathbf{x} \in \mathbb{R}^3 : x_1 + 2x_2 < 0 \}\)

d. \(\{ \mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \}\)

e. \(\{ \mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 0 \}\)

f. \(\{ \mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = -1 \}\)

g. \(\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ for some } s, t \in \mathbb{R} \}\)

h. \(\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ for some } s, t \in \mathbb{R} \}\)

i. \(\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf
Transcribed Image Text:**1. Which of the following are subspaces? Justify your answer in each case.** a. \(\{ \mathbf{x} \in \mathbb{R}^2 : x_1 + x_2 = 1 \}\) b. \(\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \begin{bmatrix} a \\ b \\ a + b \end{bmatrix} \text{ for some } a, b \in \mathbb{R} \}\) c. \(\{ \mathbf{x} \in \mathbb{R}^3 : x_1 + 2x_2 < 0 \}\) d. \(\{ \mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \}\) e. \(\{ \mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 0 \}\) f. \(\{ \mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = -1 \}\) g. \(\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ for some } s, t \in \mathbb{R} \}\) h. \(\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ for some } s, t \in \mathbb{R} \}\) i. \(\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,