2 i İ2 Write i =-11 as a linear combination of -3, o 1 2 1 -1, 2 Is 11 4 1 2 -1 9 3.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. Write \(\vec{v} = \begin{bmatrix} 5 \\ 3 \\ -11 \\ 11 \\ 9 \end{bmatrix}\) as a linear combination of \(\begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \\ -1 \end{bmatrix}\), \(\begin{bmatrix} 1 \\ 2 \\ 0 \\ 2 \\ 1 \end{bmatrix}\), \(\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ -4 \end{bmatrix}\), \(\begin{bmatrix} 2 \\ 1 \\ -1 \\ 2 \\ 1 \end{bmatrix}\), \(\begin{bmatrix} 0 \\ 2 \\ 2 \\ -1 \\ -1 \end{bmatrix}\). Is the solution unique?
Transcribed Image Text:2. Write \(\vec{v} = \begin{bmatrix} 5 \\ 3 \\ -11 \\ 11 \\ 9 \end{bmatrix}\) as a linear combination of \(\begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \\ -1 \end{bmatrix}\), \(\begin{bmatrix} 1 \\ 2 \\ 0 \\ 2 \\ 1 \end{bmatrix}\), \(\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ -4 \end{bmatrix}\), \(\begin{bmatrix} 2 \\ 1 \\ -1 \\ 2 \\ 1 \end{bmatrix}\), \(\begin{bmatrix} 0 \\ 2 \\ 2 \\ -1 \\ -1 \end{bmatrix}\). Is the solution unique?
Expert Solution
Step 1

The inverse of the matrix: A-1 is that the inverse of Matrix for a matrix A. a simple formula are typically accustomed to calculate the inverse of a two matrix. to boot, we have a tendency to should recognize the determinant and adjoint of a three matrix therefore on cipher its inverse. The inverse of a matrix is another matrix that yields the increasing identity once increased with the provided matrix.

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,