The Scholastic Aptitude Test (SAT) is a standardized test for college admissions in the U.S. Scores on the SAT can range from 600 to 2400. Suppose that PrepIt! is a company that offers classes to help students prepare for the SAT exam. In their ad, PrepIt! claims to produce “statistically significant” increases in SAT scores. This claim comes from a study in which 427 PrepIt! students took the SAT before and after PrepIt! classes. These students are compared to 2,733 students who took the SAT twice, without any type of formal preparation between tries.   We also conduct a hypothesis test with this data and find that students who retake the SAT without PrepIt! also do significantly better (p-value < 0.0001). So now we want to determine if PrepIt! students improve more than students who retake the SAT without going through the PrepIt! program. In a hypothesis test, the difference in sample mean improvement (“PrepIt! gain” minus “control gain”) gives a p-value of 0.004. A 90% confidence interval based on this sample difference is 3.0 to 13.0. What can we conclude?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

The Scholastic Aptitude Test (SAT) is a standardized test for college admissions in the U.S. Scores on the SAT can range from 600 to 2400. Suppose that PrepIt! is a company that offers classes to help students prepare for the SAT exam. In their ad, PrepIt! claims to produce “statistically significant” increases in SAT scores. This claim comes from a study in which 427 PrepIt! students took the SAT before and after PrepIt! classes. These students are compared to 2,733 students who took the SAT twice, without any type of formal preparation between tries.

 

We also conduct a hypothesis test with this data and find that students who retake the SAT without PrepIt! also do significantly better (p-value < 0.0001). So now we want to determine if PrepIt! students improve more than students who retake the SAT without going through the PrepIt! program.

In a hypothesis test, the difference in sample mean improvement (“PrepIt! gain” minus “control gain”) gives a p-value of 0.004. A 90% confidence interval based on this sample difference is 3.0 to 13.0.

What can we conclude?

  1.  The PrepIt! claim of statistically significant differences is valid. PrepIt! classes produce improvements in SAT scores that are 3% to 13% higher than improvements seen in the comparison group.
  2.  Compared to the control group, the PrepIt! course produces statistically significant improvements in SAT scores. But the gains are too small to be of practical importance in college admissions.
  3.  We are 90% confident that between 3% and 13% of students will improve their SAT scores after taking PrepIt! This is not very impressive, as we can see by looking at the small p-value.
SAT 1ª Try
SAT 2nd Try
Improvement
Mean
Mean
Standard
Mean
Standard
Standard
deviation
deviation
deviation
Preplt!
(n = 427)
Control
500
92
529
97
29
59
506
101
527
101
21
52
(n = 2733)
%3D
Transcribed Image Text:SAT 1ª Try SAT 2nd Try Improvement Mean Mean Standard Mean Standard Standard deviation deviation deviation Preplt! (n = 427) Control 500 92 529 97 29 59 506 101 527 101 21 52 (n = 2733) %3D
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Research Ethics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman