The production of high-grade iron from hematite and magnetite using a blast furnace involves several reactions as described above. Write the balance step for each reaction. a. Main source of heat: reaction between air and coke. b. Reaction at the bottom of the furnace: carbon dioxide reacts with unburnt coke to produce carbon monoxide. c. Reaction of carbon monoxide with hematite to produce iron (II, III) oxide and carbon dioxide. d. Reaction of carbon of monoxide with magnetite to produce ferrous oxide and carbon dioxide. e. Reaction of carbon of monoxide with ferrous oxide to produce iron and carbon dioxide. f. Additional reaction: In hotter regions, coke may act as a reducing agent. Write the balanced reaction between coke and hematite to produce iron and carbon monoxide.
The production of high-grade iron from hematite and magnetite using a blast furnace involves several reactions as described above. Write the balance step for each reaction. a. Main source of heat: reaction between air and coke. b. Reaction at the bottom of the furnace: carbon dioxide reacts with unburnt coke to produce carbon monoxide. c. Reaction of carbon monoxide with hematite to produce iron (II, III) oxide and carbon dioxide. d. Reaction of carbon of monoxide with magnetite to produce ferrous oxide and carbon dioxide. e. Reaction of carbon of monoxide with ferrous oxide to produce iron and carbon dioxide. f. Additional reaction: In hotter regions, coke may act as a reducing agent. Write the balanced reaction between coke and hematite to produce iron and carbon monoxide.
Chemistry by OpenStax (2015-05-04)
1st Edition
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Chapter19: Transition Metals And Coordination Chemistry
Section: Chapter Questions
Problem 12E: How many cubic feet of air at a pressure of 760 torr and 0 C is required per ton of Fe2O3 to convert...
Related questions
Question
100%
The production of high-grade iron from hematite and magnetite using a blast furnace involves several reactions as described
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning