The normal strain in a suspended bar of material of varying cross section due to its own weight is given by the expression yy/3E where y=2.4 lb/in.³ is the specific weight of the material, y = 0.6 in. is the distance from the free (i.e., bottom) end of the bar, L = 6 in. is the length of the bar, and E=30000 ksi is a material constant. Determine, (a) the change in length of the bar due to its own weight. (b) the average normal strain over the length L of the bar (c) the maximum normal strain in the bar. Answer: (a) 5-1 (b) = 1 (c) max= x10 in. HE με
The normal strain in a suspended bar of material of varying cross section due to its own weight is given by the expression yy/3E where y=2.4 lb/in.³ is the specific weight of the material, y = 0.6 in. is the distance from the free (i.e., bottom) end of the bar, L = 6 in. is the length of the bar, and E=30000 ksi is a material constant. Determine, (a) the change in length of the bar due to its own weight. (b) the average normal strain over the length L of the bar (c) the maximum normal strain in the bar. Answer: (a) 5-1 (b) = 1 (c) max= x10 in. HE με
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![The normal strain in a suspended bar of material of varying cross section due to its own weight is given by the expression yy/3E where
y=2.4 lb/in.³ is the specific weight of the material, y = 0.6 in. is the distance from the free (i.e., bottom) end of the bar, L = 6 in. is the
length of the bar, and E=30000 ksi is a material constant. Determine,
(a) the change in length of the bar due to its own weight.
(b) the average normal strain over the length L of the bar
(c) the maximum normal strain in the bar.
Answer:
(a) 5 = 1
(b) Sa
(c) Emax=
i
x10-6 in.
με
με](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8cab4459-86d0-49ba-bee1-199ba265b33c%2F0130c826-eba6-4b5a-a4b3-3b72335d4861%2Fjg8fndi_processed.png&w=3840&q=75)
Transcribed Image Text:The normal strain in a suspended bar of material of varying cross section due to its own weight is given by the expression yy/3E where
y=2.4 lb/in.³ is the specific weight of the material, y = 0.6 in. is the distance from the free (i.e., bottom) end of the bar, L = 6 in. is the
length of the bar, and E=30000 ksi is a material constant. Determine,
(a) the change in length of the bar due to its own weight.
(b) the average normal strain over the length L of the bar
(c) the maximum normal strain in the bar.
Answer:
(a) 5 = 1
(b) Sa
(c) Emax=
i
x10-6 in.
με
με
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 6 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY