The neutron has a mass of 1.67 × 10-27 kg. Neutrons emitted in nuclear reactions can be slowed down by collisions with matter. They are referred to as thermal neutrons after they come into thermal equilibrium with the environment. The average kinetic energy (3/2 kBT) of a thermal neutron isapproximately 0.04 eV. (a) Calculate the de Broglie wavelength of a neutron with a kinetic energy of 0.040 0 eV. (b) How does your answer compare with the characteristic atomic spacing in a crystal? (c) Explain whether you expect thermal neutrons to exhibit diffraction effects when scattered by a crystal.
Compton effect
The incoming photons' energy must be in the range of an X-ray frequency to generate the Compton effect. The electron does not lose enough energy that reduces the wavelength of scattered photons towards the visible spectrum. As a result, with visible lights, the Compton effect is missing.
Recoil Velocity
The amount of backward thrust or force experienced by a person when he/she shoots a gun in the forward direction is called recoil velocity. This phenomenon always follows the law of conservation of linear momentum.
The neutron has a mass of 1.67 × 10-27 kg. Neutrons emitted in nuclear reactions can be slowed down by collisions with matter. They are referred to as thermal neutrons after they come into thermal equilibrium with the environment. The average kinetic energy (3/2 kBT) of a thermal neutron is
approximately 0.04 eV. (a) Calculate the de Broglie wavelength of a neutron with a kinetic energy of 0.040 0 eV. (b) How does your answer compare with the characteristic atomic spacing in a crystal? (c) Explain whether you expect thermal neutrons to exhibit diffraction effects when scattered by a crystal.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps