The Intel Corporation is conducting quality control on its circuit boards. Thickness of the manufactured circuit boards varies unavoidably from board to board. Suppose the thickness of the boards produced by a certain factory process varies normally. The distribution of thickness of the circuit boards is supposed to have the mean μ = 12 mm if the manufacturing process is working correctly. A random sample of five circuit boards is selected and measured, and the average thickness is found to be 9.13 mm. The standard deviation for the sample is computed to be 1.11 mm. a)Calculate a 95% confidence interval for the mean thickness of the circuit boards. b)Suppose the 95% confidence interval for the mean thickness of the circuit boards is (8.1, 11.1). What would be the correct conclusion to make for our two-sided hypothesis test at significance level 5%, given the confidence interval?
The Intel Corporation is conducting quality control on its circuit boards. Thickness of the manufactured circuit boards varies unavoidably from board to board. Suppose the thickness of the boards produced by a certain factory process varies normally. The distribution of thickness of the circuit boards is supposed to have the
a)Calculate a 95% confidence interval for the mean thickness of the circuit boards.
b)Suppose the 95% confidence interval for the mean thickness of the circuit boards is (8.1, 11.1). What would be the correct conclusion to make for our two-sided hypothesis test at significance level 5%, given the confidence interval?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images